# a course in enumeration graduate texts in mathematics

**Download Book A Course In Enumeration Graduate Texts In Mathematics in PDF format. You can Read Online A Course In Enumeration Graduate Texts In Mathematics here in PDF, EPUB, Mobi or Docx formats.**

## A Course In Enumeration

**Author :**Martin Aigner

**ISBN :**9783540390350

**Genre :**Mathematics

**File Size :**22. 33 MB

**Format :**PDF, Docs

**Download :**343

**Read :**184

Combinatorial enumeration is a readily accessible subject full of easily stated, but sometimes tantalizingly difficult problems. This book leads the reader in a leisurely way from basic notions of combinatorial enumeration to a variety of topics, ranging from algebra to statistical physics. The book is organized in three parts: Basics, Methods, and Topics. The aim is to introduce readers to a fascinating field, and to offer a sophisticated source of information for professional mathematicians desiring to learn more. There are 666 exercises, and every chapter ends with a highlight section, discussing in detail a particularly beautiful or famous result.

## Computing The Continuous Discretely

**Author :**Matthias Beck

**ISBN :**9781493929696

**Genre :**Mathematics

**File Size :**69. 16 MB

**Format :**PDF

**Download :**444

**Read :**1070

This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart’s theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler–Maclaurin summation for polytopes, computational geometry, magic squares, zonotopes, and more. With more than 300 exercises and open research problems, the reader is an active participant, carried through diverse but tightly woven mathematical fields that are inspired by an innocently elementary question: What are the relationships between the continuous volume of a polytope and its discrete volume? Reviews of the first edition: “You owe it to yourself to pick up a copy of Computing the Continuous Discretely to read about a number of interesting problems in geometry, number theory, and combinatorics.” — MAA Reviews “The book is written as an accessible and engaging textbook, with many examples, historical notes, pithy quotes, commentary integrating the mate rial, exercises, open problems and an extensive bibliography.” — Zentralblatt MATH “This beautiful book presents, at a level suitable for advanced undergraduates, a fairly complete introduction to the problem of counting lattice points inside a convex polyhedron.” — Mathematical Reviews “Many departments recognize the need for capstone courses in which graduating students can see the tools they have acquired come together in some satisfying way. Beck and Robins have written the perfect text for such a course.” — CHOICE

## Counting The Art Of Enumerative Combinatorics

**Author :**George E. Martin

**ISBN :**9781475748789

**Genre :**Mathematics

**File Size :**66. 36 MB

**Format :**PDF, Mobi

**Download :**184

**Read :**1280

This book provides an introduction to discrete mathematics. At the end of the book the reader should be able to answer counting questions such as: How many ways are there to stack n poker chips, each of which can be red, white, blue, or green, such that each red chip is adjacent to at least 1 green chip? The book can be used as a textbook for a semester course at the sophomore level. The first five chapters can also serve as a basis for a graduate course for in-service teachers.

## The Finite Simple Groups

**Author :**Robert Wilson

**ISBN :**9781848009875

**Genre :**Mathematics

**File Size :**50. 23 MB

**Format :**PDF, Mobi

**Download :**722

**Read :**956

Here, a thorough grounding in the theory of alternating and classical groups is followed by discussion of exceptional groups (classed as automorphism groups of multilinear forms), sporadic and Chevalley groups, as well as the theory of Lie algebras.

## Combinatorics Of Coxeter Groups

**Author :**Anders Bjorner

**ISBN :**9783540275961

**Genre :**Mathematics

**File Size :**52. 54 MB

**Format :**PDF, ePub, Docs

**Download :**691

**Read :**822

Includes a rich variety of exercises to accompany the exposition of Coxeter groups Coxeter groups have already been exposited from algebraic and geometric perspectives, but this book will be presenting the combinatorial aspects of Coxeter groups

## Algebraic Combinatorics

**Author :**Richard P. Stanley

**ISBN :**9781461469988

**Genre :**Mathematics

**File Size :**25. 93 MB

**Format :**PDF, Docs

**Download :**472

**Read :**883

Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author’s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models. The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix–Tree Theorem, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Polya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhauser.

## Constructive Combinatorics

**Author :**Dennis Stanton

**ISBN :**9781461249689

**Genre :**Mathematics

**File Size :**24. 75 MB

**Format :**PDF, Docs

**Download :**161

**Read :**188

The notes that eventually became this book were written between 1977 and 1985 for the course called Constructive Combinatorics at the University of Minnesota. This is a one-quarter (10 week) course for upper level undergraduate students. The class usually consists of mathematics and computer science majors, with an occasional engineering student. Several graduate students in computer science also attend. At Minnesota, Constructive Combinatorics is the third quarter of a three quarter sequence. The fIrst quarter, Enumerative Combinatorics, is at the level of the texts by Bogart [Bo], Brualdi [Br], Liu [Li] or Tucker [Tu] and is a prerequisite for this course. The second quarter, Graph Theory and Optimization, is not a prerequisite. We assume that the students are familiar with the techniques of enumeration: basic counting principles, generating functions and inclusion/exclusion. This course evolved from a course on combinatorial algorithms. That course contained a mixture of graph algorithms, optimization and listing algorithms. The computer assignments generally consisted of testing algorithms on examples. While we felt that such material was useful and not without mathematical content, we did not think that the course had a coherent mathematical focus. Furthermore, much of it was being taught, or could have been taught, elsewhere. Graph algorithms and optimization, for instance, were inserted into the graph theory course where they naturally belonged. The computer science department already taught some of the material: the simpler algorithms in a discrete mathematics course; effIciency of algorithms in a more advanced course.

## Ramanujan S Theta Functions

**Author :**Shaun Cooper

**ISBN :**9783319561721

**Genre :**Mathematics

**File Size :**54. 11 MB

**Format :**PDF, Mobi

**Download :**498

**Read :**771

Theta functions were studied extensively by Ramanujan. This book provides a systematic development of Ramanujan’s results and extends them to a general theory. The author’s treatment of the subject is comprehensive, providing a detailed study of theta functions and modular forms for levels up to 12. Aimed at advanced undergraduates, graduate students, and researchers, the organization, user-friendly presentation, and rich source of examples, lends this book to serve as a useful reference, a pedagogical tool, and a stimulus for further research. Topics, especially those discussed in the second half of the book, have been the subject of much recent research; many of which are appearing in book form for the first time. Further results are summarized in the numerous exercises at the end of each chapter.

## Combinatorial Enumeration

**Author :**Ian P. Goulden

**ISBN :**9780486435978

**Genre :**Mathematics

**File Size :**45. 49 MB

**Format :**PDF, ePub

**Download :**954

**Read :**1052

This graduate-level text presents mathematical theory and problem-solving techniques associated with enumeration problems. Subjects include the combinatorics of the ordinary generating function and the exponential generating function, the combinatorics of sequences, and the combinatorics of paths. The text is complemented by approximately 350 exercises with full solutions. 1983 edition. Foreword by Gian-Carlo Rota. References. Index.

## Combinatorial Theory

**Author :**Martin Aigner

**ISBN :**9783642591013

**Genre :**Mathematics

**File Size :**71. 81 MB

**Format :**PDF

**Download :**561

**Read :**832

This book offers a well-organized, easy-to-follow introduction to combinatorial theory, with examples, notes and exercises. ". . . a very good introduction to combinatorics. This book can warmly be recommended first of all to students interested in combinatorics." Publicationes Mathematicae Debrecen