# a first course in modular forms graduate texts in mathematics

**Download Book A First Course In Modular Forms Graduate Texts In Mathematics in PDF format. You can Read Online A First Course In Modular Forms Graduate Texts In Mathematics here in PDF, EPUB, Mobi or Docx formats.**

## A First Course In Modular Forms

**Author :**Fred Diamond

**ISBN :**038723229X

**Genre :**Mathematics

**File Size :**63. 46 MB

**Format :**PDF, Docs

**Download :**331

**Read :**289

This book introduces the theory of modular forms with an eye toward the Modularity Theorem: All rational elliptic curves arise from modular forms. The topics covered include * elliptic curves as complex tori and as algebraic curves, * modular curves as Riemann surfaces and as algebraic curves, * Hecke operators and Atkin--Lehner theory, * Hecke eigenforms and their arithmetic properties, * the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms, * elliptic and modular curves modulo~$p$ and the Eichler--Shimura Relation, * the Galois representations associated to elliptic curves and to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. A First Course in Modular Forms is written for beginning graduate students and advanced undergraduates. It does not require background in algebraic number theory or algebraic geometry, and it contains exercises throughout. Fred Diamond received his Ph.D from Princeton University in 1988 under the direction of Andrew Wiles and now teaches at Brandeis University. Jerry Shurman received his Ph.D from Princeton University in 1988 under the direction of Goro Shimura and now teaches at Reed College.

## A First Course In Modular Forms

**Author :**Fred Diamond

**ISBN :**1441920056

**Genre :**Mathematics

**File Size :**57. 67 MB

**Format :**PDF, Mobi

**Download :**240

**Read :**1133

This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Discussion covers elliptic curves as complex tori and as algebraic curves; modular curves as Riemann surfaces and as algebraic curves; Hecke operators and Atkin-Lehner theory; Hecke eigenforms and their arithmetic properties; the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. The authors assume no background in algebraic number theory and algebraic geometry. Exercises are included.

## A First Course In Modular Forms

**Author :**Fred Diamond

**ISBN :**9780387272269

**Genre :**Mathematics

**File Size :**64. 58 MB

**Format :**PDF, ePub

**Download :**294

**Read :**180

This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Discussion covers elliptic curves as complex tori and as algebraic curves; modular curves as Riemann surfaces and as algebraic curves; Hecke operators and Atkin-Lehner theory; Hecke eigenforms and their arithmetic properties; the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. The authors assume no background in algebraic number theory and algebraic geometry. Exercises are included.

## Introduction To Elliptic Curves And Modular Forms

**Author :**Neal Koblitz

**ISBN :**0387979662

**Genre :**Mathematics

**File Size :**62. 11 MB

**Format :**PDF, ePub, Mobi

**Download :**808

**Read :**1284

This textbook covers the basic properties of elliptic curves and modular forms, with emphasis on certain connections with number theory. The ancient "congruent number problem" is the central motivating example for most of the book. My purpose is to make the subject accessible to those who find it hard to read more advanced or more algebraically oriented treatments. At the same time I want to introduce topics which are at the forefront of current research. Down-to-earth examples are given in the text and exercises, with the aim of making the material readable and interesting to mathematicians in fields far removed from the subject of the book. With numerous exercises (and answers) included, the textbook is also intended for graduate students who have completed the standard first-year courses in real and complex analysis and algebra. Such students would learn applications of techniques from those courses. thereby solidifying their under standing of some basic tools used throughout mathematics. Graduate stu dents wanting to work in number theory or algebraic geometry would get a motivational, example-oriented introduction. In addition, advanced under graduates could use the book for independent study projects, senior theses, and seminar work.

## A Course In Arithmetic

**Author :**J-P. Serre

**ISBN :**9781468498844

**Genre :**Mathematics

**File Size :**47. 4 MB

**Format :**PDF, ePub, Docs

**Download :**271

**Read :**564

This book is divided into two parts. The first one is purely algebraic. Its objective is the classification of quadratic forms over the field of rational numbers (Hasse-Minkowski theorem). It is achieved in Chapter IV. The first three chapters contain some preliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols. Chapter V applies the preceding results to integral quadratic forms of discriminant ± I. These forms occur in various questions: modular functions, differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor phic functions). Chapter VI gives the proof of the "theorem on arithmetic progressions" due to Dirichlet; this theorem is used at a critical point in the first part (Chapter Ill, no. 2.2). Chapter VII deals with modular forms, and in particular, with theta functions. Some of the quadratic forms of Chapter V reappear here. The two parts correspond to lectures given in 1962 and 1964 to second year students at the Ecole Normale Superieure. A redaction of these lectures in the form of duplicated notes, was made by J.-J. Sansuc (Chapters I-IV) and J.-P. Ramis and G. Ruget (Chapters VI-VII). They were very useful to me; I extend here my gratitude to their authors.

## The Arithmetic Of Elliptic Curves

**Author :**Joseph H. Silverman

**ISBN :**0387094946

**Genre :**Mathematics

**File Size :**42. 45 MB

**Format :**PDF, Docs

**Download :**579

**Read :**160

The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.

## Modular Forms And Fermat S Last Theorem

**Author :**Gary Cornell

**ISBN :**0387946098

**Genre :**Mathematics

**File Size :**87. 16 MB

**Format :**PDF, Docs

**Download :**826

**Read :**755

Fermat's Last Theorem baffled mathematicians for over three centuries until it was solved by Andrew Wiles of Princeton in 1993. This important book begins with an overview of the complete proof, followed by chapters surveying the mathematics behind it. Readers will find this volume to be an indispensable resource for mastering the epoch-making proof of Fermat's Last Theorem. 15 illus.