# a first course in modular forms graduate texts in mathematics

**Download Book A First Course In Modular Forms Graduate Texts In Mathematics in PDF format. You can Read Online A First Course In Modular Forms Graduate Texts In Mathematics here in PDF, EPUB, Mobi or Docx formats.**

## A First Course In Modular Forms

**Author :**Fred Diamond

**ISBN :**9780387272269

**Genre :**Mathematics

**File Size :**43. 12 MB

**Format :**PDF, ePub, Mobi

**Download :**116

**Read :**553

This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Discussion covers elliptic curves as complex tori and as algebraic curves; modular curves as Riemann surfaces and as algebraic curves; Hecke operators and Atkin-Lehner theory; Hecke eigenforms and their arithmetic properties; the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. The authors assume no background in algebraic number theory and algebraic geometry. Exercises are included.

## A First Course In Modular Forms

**Author :**Fred Diamond

**ISBN :**038723229X

**Genre :**Mathematics

**File Size :**30. 40 MB

**Format :**PDF, Docs

**Download :**419

**Read :**733

This book introduces the theory of modular forms with an eye toward the Modularity Theorem: All rational elliptic curves arise from modular forms. The topics covered include * elliptic curves as complex tori and as algebraic curves, * modular curves as Riemann surfaces and as algebraic curves, * Hecke operators and Atkin--Lehner theory, * Hecke eigenforms and their arithmetic properties, * the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms, * elliptic and modular curves modulo~$p$ and the Eichler--Shimura Relation, * the Galois representations associated to elliptic curves and to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. A First Course in Modular Forms is written for beginning graduate students and advanced undergraduates. It does not require background in algebraic number theory or algebraic geometry, and it contains exercises throughout. Fred Diamond received his Ph.D from Princeton University in 1988 under the direction of Andrew Wiles and now teaches at Brandeis University. Jerry Shurman received his Ph.D from Princeton University in 1988 under the direction of Goro Shimura and now teaches at Reed College.

## A First Course In Modular Forms

**Author :**Fred Diamond

**ISBN :**1441920056

**Genre :**Mathematics

**File Size :**44. 96 MB

**Format :**PDF, Docs

**Download :**134

**Read :**775

This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Discussion covers elliptic curves as complex tori and as algebraic curves; modular curves as Riemann surfaces and as algebraic curves; Hecke operators and Atkin-Lehner theory; Hecke eigenforms and their arithmetic properties; the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. The authors assume no background in algebraic number theory and algebraic geometry. Exercises are included.

## Introduction To Elliptic Curves And Modular Forms

**Author :**Neal Koblitz

**ISBN :**0387979662

**Genre :**Mathematics

**File Size :**48. 40 MB

**Format :**PDF, Kindle

**Download :**818

**Read :**341

This textbook covers the basic properties of elliptic curves and modular forms, with emphasis on certain connections with number theory. The ancient "congruent number problem" is the central motivating example for most of the book. My purpose is to make the subject accessible to those who find it hard to read more advanced or more algebraically oriented treatments. At the same time I want to introduce topics which are at the forefront of current research. Down-to-earth examples are given in the text and exercises, with the aim of making the material readable and interesting to mathematicians in fields far removed from the subject of the book. With numerous exercises (and answers) included, the textbook is also intended for graduate students who have completed the standard first-year courses in real and complex analysis and algebra. Such students would learn applications of techniques from those courses. thereby solidifying their under standing of some basic tools used throughout mathematics. Graduate stu dents wanting to work in number theory or algebraic geometry would get a motivational, example-oriented introduction. In addition, advanced under graduates could use the book for independent study projects, senior theses, and seminar work.

## Modular Functions And Dirichlet Series In Number Theory

**Author :**Tom M. Apostol

**ISBN :**9781461209997

**Genre :**Mathematics

**File Size :**22. 18 MB

**Format :**PDF, ePub

**Download :**278

**Read :**450

A new edition of a classical treatment of elliptic and modular functions with some of their number-theoretic applications, this text offers an updated bibliography and an alternative treatment of the transformation formula for the Dedekind eta function. It covers many topics, such as Hecke’s theory of entire forms with multiplicative Fourier coefficients, and the last chapter recounts Bohr’s theory of equivalence of general Dirichlet series.

## Modular Forms

**Author :**Toshitsune Miyake

**ISBN :**3540295933

**Genre :**Mathematics

**File Size :**42. 60 MB

**Format :**PDF, Mobi

**Download :**358

**Read :**906

This book is a translation of the earlier book written by Koji Doi and the author, who revised it substantially for this English edition. It offers the basic knowledge of elliptic modular forms necessary to understand recent developments in number theory. It also treats the unit groups of quaternion algebras, rarely dealt with in books; and in the last chapter, Eisenstein series with parameter are discussed following the recent work of Shimura.

## Modular Forms A Computational Approach

**Author :**William A. Stein

**ISBN :**9780821839607

**Genre :**Mathematics

**File Size :**48. 78 MB

**Format :**PDF, Kindle

**Download :**842

**Read :**1227

This marvellous and highly original book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments. Its novelty lies in its computational emphasis throughout: Stein not only defines what modular forms are, but shows in illuminating detail how one can compute everything about them in practice. This is illustrated throughout the book with examples from his own (entirely free) software package SAGE, which really bring the subject to life while not detracting in any way from its theoretical beauty. The author is the leading expert in computations with modular forms, and what he says on this subject is all tried and tested and based on his extensive experience. As well as being an invaluable companion to those learning the theory in a more traditional way, this book will be a great help to those who wish to use modular forms in applications, such as in the explicit solution of Diophantine equations. There is also a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it to inspire many PhD theses for years to come. While the book's main readership will be graduate students in number theory, it will also be accessible to advanced undergraduates and useful to both specialists and non-specialists in number theory. --John E. Cremona, University of Nottingham William Stein is an associate professor of mathematics at the University of Washington at Seattle. He earned a PhD in mathematics from UC Berkeley and has held positions at Harvard University and UC San Diego. His current research interests lie in modular forms, elliptic curves, and computational mathematics.