an introduction to differential equations stochastic modeling methods and analysis volume 2

Download Book An Introduction To Differential Equations Stochastic Modeling Methods And Analysis Volume 2 in PDF format. You can Read Online An Introduction To Differential Equations Stochastic Modeling Methods And Analysis Volume 2 here in PDF, EPUB, Mobi or Docx formats.

An Introduction To Differential Equations

Author : Anil G Ladde
ISBN : 9789814397391
Genre : Mathematics
File Size : 46. 17 MB
Format : PDF, ePub, Mobi
Download : 289
Read : 590

Download Now

Volume 1: Deterministic Modeling, Methods and Analysis For more than half a century, stochastic calculus and stochastic differential equations have played a major role in analyzing the dynamic phenomena in the biological and physical sciences, as well as engineering. The advancement of knowledge in stochastic differential equations is spreading rapidly across the graduate and postgraduate programs in universities around the globe. This will be the first available book that can be used in any undergraduate/graduate stochastic modeling/applied mathematics courses and that can be used by an interdisciplinary researcher with a minimal academic background. An Introduction to Differential Equations: Volume 2 is a stochastic version of Volume 1 (“An Introduction to Differential Equations: Deterministic Modeling, Methods and Analysis”). Both books have a similar design, but naturally, differ by calculi. Again, both volumes use an innovative style in the presentation of the topics, methods and concepts with adequate preparation in deterministic Calculus. Errata Errata (32 KB)

Introduction To Theoretical Neurobiology Volume 2 Nonlinear And Stochastic Theories

Author : Henry C. Tuckwell
ISBN : 052101932X
Genre : Mathematics
File Size : 82. 39 MB
Format : PDF, ePub
Download : 171
Read : 292

Download Now

The second part of this two-volume set contains advanced aspects of the quantitative theory of the dynamics of neurons. It begins with an introduction to the effects of reversal potentials on response to synaptic input. It then develops the theory of action potential generation based on the seminal Hodgkin-Huxley equations and gives methods for their solution in the space-clamped and nonspaceclamped cases. The remainder of the book discusses stochastic models of neural activity and ends with a statistical analysis of neuronal data with emphasis on spike trains. The mathematics is more complex in this volume than in the first volume and involves numerical methods of solution of partial differential equations and the statistical analysis of point processes.

Stochastic Models Information Theory And Lie Groups Volume 2

Author : Gregory S. Chirikjian
ISBN : 9780817649432
Genre : Mathematics
File Size : 49. 57 MB
Format : PDF, ePub, Docs
Download : 390
Read : 312

Download Now

This two-volume set covers stochastic processes, information theory and Lie groups in a unified setting, bridging topics rarely studied together. The emphasis is on using stochastic, geometric, and group-theoretic concepts for modeling physical phenomena.

Stochastic Simulation And Monte Carlo Methods

Author : Carl Graham
ISBN : 9783642393631
Genre : Mathematics
File Size : 76. 59 MB
Format : PDF, ePub
Download : 859
Read : 1037

Download Now

In various scientific and industrial fields, stochastic simulations are taking on a new importance. This is due to the increasing power of computers and practitioners’ aim to simulate more and more complex systems, and thus use random parameters as well as random noises to model the parametric uncertainties and the lack of knowledge on the physics of these systems. The error analysis of these computations is a highly complex mathematical undertaking. Approaching these issues, the authors present stochastic numerical methods and prove accurate convergence rate estimates in terms of their numerical parameters (number of simulations, time discretization steps). As a result, the book is a self-contained and rigorous study of the numerical methods within a theoretical framework. After briefly reviewing the basics, the authors first introduce fundamental notions in stochastic calculus and continuous-time martingale theory, then develop the analysis of pure-jump Markov processes, Poisson processes, and stochastic differential equations. In particular, they review the essential properties of Itô integrals and prove fundamental results on the probabilistic analysis of parabolic partial differential equations. These results in turn provide the basis for developing stochastic numerical methods, both from an algorithmic and theoretical point of view. The book combines advanced mathematical tools, theoretical analysis of stochastic numerical methods, and practical issues at a high level, so as to provide optimal results on the accuracy of Monte Carlo simulations of stochastic processes. It is intended for master and Ph.D. students in the field of stochastic processes and their numerical applications, as well as for physicists, biologists, economists and other professionals working with stochastic simulations, who will benefit from the ability to reliably estimate and control the accuracy of their simulations.

An Introduction To Partial Differential Equations With Matlab Second Edition

Author : Matthew P. Coleman
ISBN : 9781439898475
Genre : Mathematics
File Size : 90. 58 MB
Format : PDF, Mobi
Download : 241
Read : 650

Download Now

An Introduction to Partial Differential Equations with MATLAB®, Second Edition illustrates the usefulness of PDEs through numerous applications and helps students appreciate the beauty of the underlying mathematics. Updated throughout, this second edition of a bestseller shows students how PDEs can model diverse problems, including the flow of heat, the propagation of sound waves, the spread of algae along the ocean’s surface, the fluctuation in the price of a stock option, and the quantum mechanical behavior of a hydrogen atom. Suitable for a two-semester introduction to PDEs and Fourier series for mathematics, physics, and engineering students, the text teaches the equations based on method of solution. It provides both physical and mathematical motivation as much as possible. The author treats problems in one spatial dimension before dealing with those in higher dimensions. He covers PDEs on bounded domains and then on unbounded domains, introducing students to Fourier series early on in the text. Each chapter’s prelude explains what and why material is to be covered and considers the material in a historical setting. The text also contains many exercises, including standard ones and graphical problems using MATLAB. While the book can be used without MATLAB, instructors and students are encouraged to take advantage of MATLAB’s excellent graphics capabilities. The MATLAB code used to generate the tables and figures is available in an appendix and on the author’s website.

Stochastic Partial Differential Equations

Author : H. Holden
ISBN : 9781468492156
Genre : Mathematics
File Size : 27. 78 MB
Format : PDF, ePub, Mobi
Download : 436
Read : 1030

Download Now

This book is based on research that, to a large extent, started around 1990, when a research project on fluid flow in stochastic reservoirs was initiated by a group including some of us with the support of VISTA, a research coopera tion between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap A.S. (Statoil). The purpose of the project was to use stochastic partial differential equations (SPDEs) to describe the flow of fluid in a medium where some of the parameters, e.g., the permeability, were stochastic or "noisy". We soon realized that the theory of SPDEs at the time was insufficient to handle such equations. Therefore it became our aim to develop a new mathematically rigorous theory that satisfied the following conditions. 1) The theory should be physically meaningful and realistic, and the corre sponding solutions should make sense physically and should be useful in applications. 2) The theory should be general enough to handle many of the interesting SPDEs that occur in reservoir theory and related areas. 3) The theory should be strong and efficient enough to allow us to solve th,~se SPDEs explicitly, or at least provide algorithms or approximations for the solutions.

Solution Sets Of Differential Equations In Abstract Spaces

Author : Robert Dragoni
ISBN : 0582294509
Genre : Mathematics
File Size : 42. 46 MB
Format : PDF, Docs
Download : 495
Read : 410

Download Now

This book presents results on the geometric/topological structure of the solution set S of an initial-value problem x(t) = f(t, x(t)), x(0) =xo, when f is a continuous function with values in an infinite-dimensional space. A comprehensive survey of existence results and the properties of S, e.g. when S is a connected set, a retract, an acyclic set, is presented. The authors also survey results onthe properties of S for initial-value problems involving differential inclusions, and for boundary-value problems. This book will be of particular interest to researchers in ordinary and partial differential equations and some workers in control theory.

Top Download:

Best Books