analysis of capture recapture data chapman hall crc interdisciplinary statistics

Download Book Analysis Of Capture Recapture Data Chapman Hall Crc Interdisciplinary Statistics in PDF format. You can Read Online Analysis Of Capture Recapture Data Chapman Hall Crc Interdisciplinary Statistics here in PDF, EPUB, Mobi or Docx formats.

Analysis Of Capture Recapture Data

Author : Rachel S. McCrea
ISBN : 9781439836590
Genre : Mathematics
File Size : 64. 13 MB
Format : PDF, ePub, Docs
Download : 167
Read : 200

Get This Book

An important first step in studying the demography of wild animals is to identify the animals uniquely through applying markings, such as rings, tags, and bands. Once the animals are encountered again, researchers can study different forms of capture-recapture data to estimate features, such as the mortality and size of the populations. Capture-recapture methods are also used in other areas, including epidemiology and sociology. With an emphasis on ecology, Analysis of Capture-Recapture Data covers many modern developments of capture-recapture and related models and methods and places them in the historical context of research from the past 100 years. The book presents both classical and Bayesian methods. A range of real data sets motivates and illustrates the material and many examples illustrate biometry and applied statistics at work. In particular, the authors demonstrate several of the modeling approaches using one substantial data set from a population of great cormorants. The book also discusses which computer programs to use for implementing the models and contains 130 exercises that extend the main material. The data sets, computer programs, and other ancillaries are available at The book is accessible to advanced undergraduate and higher-level students, quantitative ecologists, and statisticians. It helps readers understand model formulation and applications, including the technicalities of model diagnostics and checking.

Capture Recapture Methods For The Social And Medical Sciences

Author : Dankmar Bohning
ISBN : 9781351647977
Genre : Mathematics
File Size : 78. 48 MB
Format : PDF, Kindle
Download : 180
Read : 810

Get This Book

Capture-recapture methods have been used in biology and ecology for more than 100 years. However, it is only recently that these methods have become popular in the social and medical sciences to estimate the size of elusive populations such as illegal immigrants, illicit drug users, or people with a drinking problem. Capture-Recapture Methods for the Social and Medical Sciences brings together important developments which allow the application of these methods. It has contributions from more than 40 researchers, and is divided into eight parts, including topics such as ratio regression models, capture-recapture meta-analysis, extensions of single and multiple source models, latent variable models and Bayesian approaches. The book is suitable for everyone who is interested in applying capture-recapture methods in the social and medical sciences. Furthermore, it is also of interest to those working with capture-recapture methods in biology and ecology, as there are some important developments covered in the book that also apply to these classical application areas.

Bayesian Analysis For Population Ecology

Author : Ruth King
ISBN : 1439811881
Genre : Mathematics
File Size : 33. 39 MB
Format : PDF, ePub, Docs
Download : 178
Read : 165

Get This Book

Novel Statistical Tools for Conserving and Managing Populations By gathering information on key demographic parameters, scientists can often predict how populations will develop in the future and relate these parameters to external influences, such as global warming. Because of their ability to easily incorporate random effects, fit state-space models, evaluate posterior model probabilities, and deal with missing data, modern Bayesian methods have become important in this area of statistical inference and forecasting. Emphasising model choice and model averaging, Bayesian Analysis for Population Ecology presents up-to-date methods for analysing complex ecological data. Leaders in the statistical ecology field, the authors apply the theory to a wide range of actual case studies and illustrate the methods using WinBUGS and R. The computer programs and full details of the data sets are available on the book’s website. The first part of the book focuses on models and their corresponding likelihood functions. The authors examine classical methods of inference for estimating model parameters, including maximum-likelihood estimates of parameters using numerical optimisation algorithms. After building this foundation, the authors develop the Bayesian approach for fitting models to data. They also compare Bayesian and traditional approaches to model fitting and inference. Exploring challenging problems in population ecology, this book shows how to use the latest Bayesian methods to analyse data. It enables readers to apply the methods to their own problems with confidence.

Bayesian Disease Mapping

Author : Andrew B. Lawson
ISBN : 9781466504820
Genre : Mathematics
File Size : 90. 9 MB
Format : PDF
Download : 313
Read : 208

Get This Book

Since the publication of the first edition, many new Bayesian tools and methods have been developed for space-time data analysis, the predictive modeling of health outcomes, and other spatial biostatistical areas. Exploring these new developments, Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Second Edition provides an up-to-date, cohesive account of the full range of Bayesian disease mapping methods and applications. A biostatistics professor and WHO advisor, the author illustrates the use of Bayesian hierarchical modeling in the geographical analysis of disease through a range of real-world datasets. New to the Second Edition Three new chapters on regression and ecological analysis, putative hazard modeling, and disease map surveillance Expanded material on case event modeling and spatiotemporal analysis New and updated examples Two new appendices featuring examples of integrated nested Laplace approximation (INLA) and conditional autoregressive (CAR) models In addition to these new topics, the book covers more conventional areas such as relative risk estimation, clustering, spatial survival analysis, and longitudinal analysis. After an introduction to Bayesian inference, computation, and model assessment, the text focuses on important themes, including disease map reconstruction, cluster detection, regression and ecological analysis, putative hazard modeling, analysis of multiple scales and multiple diseases, spatial survival and longitudinal studies, spatiotemporal methods, and map surveillance. It shows how Bayesian disease mapping can yield significant insights into georeferenced health data. WinBUGS and R are used throughout for data manipulation and simulation.

Modern Directional Statistics

Author : Christophe Ley
ISBN : 9781351645782
Genre : Computers
File Size : 53. 28 MB
Format : PDF, ePub, Docs
Download : 247
Read : 457

Get This Book

Modern Directional Statistics collects important advances in methodology and theory for directional statistics over the last two decades. It provides a detailed overview and analysis of recent results that can help both researchers and practitioners. Knowledge of multivariate statistics eases the reading but is not mandatory. The field of directional statistics has received a lot of attention over the past two decades, due to new demands from domains such as life sciences or machine learning, to the availability of massive data sets requiring adapted statistical techniques, and to technological advances. This book covers important progresses in distribution theory,high-dimensional statistics, kernel density estimation, efficient inference on directional supports, and computational and graphical methods. Christophe Ley is professor of mathematical statistics at Ghent University. His research interests include semi-parametrically efficient inference, flexible modeling, directional statistics and the study of asymptotic approximations via Stein’s Method. His achievements include the Marie-Jeanne Laurent-Duhamel prize of the Société Française de Statistique and an elected membership at the International Statistical Institute. He is associate editor for the journals Computational Statistics & Data Analysis and Econometrics and Statistics. Thomas Verdebout is professor of mathematical statistics at Université libre de Bruxelles (ULB). His main research interests are semi-parametric statistics, high- dimensional statistics, directional statistics and rank-based procedures. He has won an annual prize of the Belgian Academy of Sciences and is an elected member of the International Statistical Institute. He is associate editor for the journals Statistics and Probability Letters and Journal of Multivariate Analysis.

Correspondence Analysis In Practice Third Edition

Author : Michael Greenacre
ISBN : 9781315352954
Genre : Mathematics
File Size : 85. 79 MB
Format : PDF, Mobi
Download : 116
Read : 563

Get This Book

Drawing on the author’s 45 years of experience in multivariate analysis, Correspondence Analysis in Practice, Third Edition, shows how the versatile method of correspondence analysis (CA) can be used for data visualization in a wide variety of situations. CA and its variants, subset CA, multiple CA and joint CA, translate two-way and multi-way tables into more readable graphical forms — ideal for applications in the social, environmental and health sciences, as well as marketing, economics, linguistics, archaeology, and more. Michael Greenacre is Professor of Statistics at the Universitat Pompeu Fabra, Barcelona, Spain, where he teaches a course, amongst others, on Data Visualization. He has authored and co-edited nine books and 80 journal articles and book chapters, mostly on correspondence analysis, the latest being Visualization and Verbalization of Data in 2015. He has given short courses in fifteen countries to environmental scientists, sociologists, data scientists and marketing professionals, and has specialized in statistics in ecology and social science.

Survival Analysis With Interval Censored Data

Author : Kris Bogaerts
ISBN : 9781351643054
Genre : Mathematics
File Size : 43. 41 MB
Format : PDF, ePub, Docs
Download : 121
Read : 499

Get This Book

Survival Analysis with Interval-Censored Data: A Practical Approach with Examples in R, SAS, and BUGS provides the reader with a practical introduction into the analysis of interval-censored survival times. Although many theoretical developments have appeared in the last fifty years, interval censoring is often ignored in practice. Many are unaware of the impact of inappropriately dealing with interval censoring. In addition, the necessary software is at times difficult to trace. This book fills in the gap between theory and practice. Features: -Provides an overview of frequentist as well as Bayesian methods. -Include a focus on practical aspects and applications. -Extensively illustrates the methods with examples using R, SAS, and BUGS. Full programs are available on a supplementary website. The authors: Kris Bogaerts is project manager at I-BioStat, KU Leuven. He received his PhD in science (statistics) at KU Leuven on the analysis of interval-censored data. He has gained expertise in a great variety of statistical topics with a focus on the design and analysis of clinical trials. Arnošt Komárek is associate professor of statistics at Charles University, Prague. His subject area of expertise covers mainly survival analysis with the emphasis on interval-censored data and classification based on longitudinal data. He is past chair of the Statistical Modelling Society?and editor of?Statistical Modelling: An International Journal. Emmanuel Lesaffre is professor of biostatistics at I-BioStat, KU Leuven. His research interests include Bayesian methods, longitudinal data analysis, statistical modelling, analysis of dental data, interval-censored data, misclassification issues, and clinical trials. He is the founding chair of the?Statistical Modelling Society, past-president of the?International Society for Clinical Biostatistics,?and fellow of?ISI?and?ASA.

Generalized Latent Variable Modeling

Author : Anders Skrondal
ISBN : 0203489438
Genre : Mathematics
File Size : 32. 12 MB
Format : PDF, ePub, Mobi
Download : 307
Read : 154

Get This Book

This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models. Following a gentle introduction to latent variable modeling, the authors clearly explain and contrast a wide range of estimation and prediction methods from biostatistics, psychometrics, econometrics, and statistics. They present exciting and realistic applications that demonstrate how researchers can use latent variable modeling to solve concrete problems in areas as diverse as medicine, economics, and psychology. The examples considered include many nonstandard response types, such as ordinal, nominal, count, and survival data. Joint modeling of mixed responses, such as survival and longitudinal data, is also illustrated. Numerous displays, figures, and graphs make the text vivid and easy to read. About the authors: Anders Skrondal is Professor and Chair in Social Statistics, Department of Statistics, London School of Economics, UK Sophia Rabe-Hesketh is a Professor of Educational Statistics at the Graduate School of Education and Graduate Group in Biostatistics, University of California, Berkeley, USA.

Statistical Methods For Handling Incomplete Data

Author : Jae Kwang Kim
ISBN : 9781439849637
Genre : Mathematics
File Size : 43. 71 MB
Format : PDF, Kindle
Download : 416
Read : 886

Get This Book

Due to recent theoretical findings and advances in statistical computing, there has been a rapid development of techniques and applications in the area of missing data analysis. Statistical Methods for Handling Incomplete Data covers the most up-to-date statistical theories and computational methods for analyzing incomplete data. Suitable for graduate students and researchers in statistics, the book presents thorough treatments of: Statistical theories of likelihood-based inference with missing data Computational techniques and theories on imputation Methods involving propensity score weighting, nonignorable missing data, longitudinal missing data, survey sampling, and statistical matching Assuming prior experience with statistical theory and linear models, the text uses the frequentist framework with less emphasis on Bayesian methods and nonparametric methods. It includes many examples to help readers understand the methodologies. Some of the research ideas introduced can be developed further for specific applications.

Statistical Methods For Field And Laboratory Studies In Behavioral Ecology

Author : Scott Pardo
ISBN : 9781351723152
Genre : Mathematics
File Size : 41. 37 MB
Format : PDF, ePub, Docs
Download : 613
Read : 225

Get This Book

Statistical Methods for Field and Laboratory Studies in Behavioral Ecology focuses on how statistical methods may be used to make sense of behavioral ecology and other data. It presents fundamental concepts in statistical inference and intermediate topics such as multiple least squares regression and ANOVA. The objective is to teach students to recognize situations where various statistical methods should be used, understand the strengths and limitations of the methods, and to show how they are implemented in R code. Examples are based on research described in the literature of behavioral ecology, with data sets and analysis code provided. Features: This intermediate to advanced statistical methods text was written with the behavioral ecologist in mind Computer programs are provided, written in the R language. Datasets are also provided, mostly based, at least to some degree, on real studies. Methods and ideas discussed include multiple regression and ANOVA, logistic and Poisson regression, machine learning and model identification, time-to-event modeling, time series and stochastic modeling, game-theoretic modeling, multivariate methods, study design/sample size, and what to do when things go wrong. It is assumed that the reader has already had exposure to statistics through a first introductory course at least, and also has sufficient knowledge of R. However, some introductory material is included to aid the less initiated reader. Scott Pardo, Ph.D., is an accredited professional statistician (PStat®) by the American Statistical Association. Michael Pardo is a Ph.D. is a candidate in behavioral ecology at Cornell University, specializing in animal communication and social behavior. ? ?

Top Download:

Best Books