# basic algebraic topology

**Download Book Basic Algebraic Topology in PDF format. You can Read Online Basic Algebraic Topology here in PDF, EPUB, Mobi or Docx formats.**

## Basic Algebraic Topology

**Author :**Anant R. Shastri

**ISBN :**9781466562448

**Genre :**Mathematics

**File Size :**56. 51 MB

**Format :**PDF, Docs

**Download :**632

**Read :**175

Building on rudimentary knowledge of real analysis, point-set topology, and basic algebra, Basic Algebraic Topology provides plenty of material for a two-semester course in algebraic topology. The book first introduces the necessary fundamental concepts, such as relative homotopy, fibrations and cofibrations, category theory, cell complexes, and simplicial complexes. It then focuses on the fundamental group, covering spaces and elementary aspects of homology theory. It presents the central objects of study in topology visualization: manifolds. After developing the homology theory with coefficients, homology of the products, and cohomology algebra, the book returns to the study of manifolds, discussing Poincaré duality and the De Rham theorem. A brief introduction to cohomology of sheaves and Čech cohomology follows. The core of the text covers higher homotopy groups, Hurewicz’s isomorphism theorem, obstruction theory, Eilenberg-Mac Lane spaces, and Moore-Postnikov decomposition. The author then relates the homology of the total space of a fibration to that of the base and the fiber, with applications to characteristic classes and vector bundles. The book concludes with the basic theory of spectral sequences and several applications, including Serre’s seminal work on higher homotopy groups. Thoroughly classroom-tested, this self-contained text takes students all the way to becoming algebraic topologists. Historical remarks throughout the text make the subject more meaningful to students. Also suitable for researchers, the book provides references for further reading, presents full proofs of all results, and includes numerous exercises of varying levels.

## Basic Concepts Of Algebraic Topology

**Author :**F.H. Croom

**ISBN :**9781468494754

**Genre :**Mathematics

**File Size :**87. 63 MB

**Format :**PDF, Docs

**Download :**995

**Read :**1240

This text is intended as a one semester introduction to algebraic topology at the undergraduate and beginning graduate levels. Basically, it covers simplicial homology theory, the fundamental group, covering spaces, the higher homotopy groups and introductory singular homology theory. The text follows a broad historical outline and uses the proofs of the discoverers of the important theorems when this is consistent with the elementary level of the course. This method of presentation is intended to reduce the abstract nature of algebraic topology to a level that is palatable for the beginning student and to provide motivation and cohesion that are often lacking in abstact treatments. The text emphasizes the geometric approach to algebraic topology and attempts to show the importance of topological concepts by applying them to problems of geometry and analysis. The prerequisites for this course are calculus at the sophomore level, a one semester introduction to the theory of groups, a one semester introduc tion to point-set topology and some familiarity with vector spaces. Outlines of the prerequisite material can be found in the appendices at the end of the text. It is suggested that the reader not spend time initially working on the appendices, but rather that he read from the beginning of the text, referring to the appendices as his memory needs refreshing. The text is designed for use by college juniors of normal intelligence and does not require "mathematical maturity" beyond the junior level.

## Basic Algebraic Topology And Its Applications

**Author :**Mahima Ranjan Adhikari

**ISBN :**9788132228431

**Genre :**Mathematics

**File Size :**65. 25 MB

**Format :**PDF, ePub, Docs

**Download :**742

**Read :**842

This book provides an accessible introduction to algebraic topology, a field at the intersection of topology, geometry and algebra, together with its applications. Moreover, it covers several related topics that are in fact important in the overall scheme of algebraic topology. Comprising eighteen chapters and two appendices, the book integrates various concepts of algebraic topology, supported by examples, exercises, applications and historical notes. Primarily intended as a textbook, the book offers a valuable resource for undergraduate, postgraduate and advanced mathematics students alike. Focusing more on the geometric than on algebraic aspects of the subject, as well as its natural development, the book conveys the basic language of modern algebraic topology by exploring homotopy, homology and cohomology theories, and examines a variety of spaces: spheres, projective spaces, classical groups and their quotient spaces, function spaces, polyhedra, topological groups, Lie groups and cell complexes, etc. The book studies a variety of maps, which are continuous functions between spaces. It also reveals the importance of algebraic topology in contemporary mathematics, theoretical physics, computer science, chemistry, economics, and the biological and medical sciences, and encourages students to engage in further study.

## A Basic Course In Algebraic Topology

**Author :**W.S. Massey

**ISBN :**038797430X

**Genre :**Mathematics

**File Size :**20. 33 MB

**Format :**PDF

**Download :**745

**Read :**1281

This book provides a systematic treatment of the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. It avoids all unnecessary definitions, terminology, and technical machinery. Wherever possible, the book emphasizes the geometric motivation behind the various concepts.

## A Concise Course In Algebraic Topology

**Author :**J. P. May

**ISBN :**0226511839

**Genre :**Mathematics

**File Size :**90. 98 MB

**Format :**PDF, ePub, Mobi

**Download :**282

**Read :**701

Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

## Algebraic Topology

**Author :**

**ISBN :**730210588X

**Genre :**Algebraic topology

**File Size :**79. 24 MB

**Format :**PDF

**Download :**735

**Read :**906

## Algebraic Topology

**Author :**William Fulton

**ISBN :**9781461241805

**Genre :**Mathematics

**File Size :**86. 29 MB

**Format :**PDF, Kindle

**Download :**281

**Read :**533

To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ ential topology, etc.), we concentrate our attention on concrete prob lems in low dimensions, introducing only as much algebraic machin ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel opment of the subject. What would we like a student to know after a first course in to pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind ing numbers and degrees of mappings, fixed-point theorems; appli cations such as the Jordan curve theorem, invariance of domain; in dices of vector fields and Euler characteristics; fundamental groups

## Algebraic Topology

**Author :**Hajime Satō

**ISBN :**0821810464

**Genre :**Mathematics

**File Size :**45. 19 MB

**Format :**PDF

**Download :**172

**Read :**294

The single most difficult thing one faces when one begins to learn a new branch of mathematics is to get a feel for the mathematical sense of the subject. The purpose of this book is to help the aspiring reader acquire this essential common sense about algebraic topology in a short period of time. To this end, Sato leads the reader through simple but meaningful examples in concrete terms. Moreover, results are not discussed in their greatest possible generality, but in terms of the simplest and most essential cases. In response to suggestions from readers of the original edition of this book, Sato has added an appendix of useful definitions and results on sets, general topology, groups and such. He has also provided references. Topics covered include fundamental notions such as homeomorphisms, homotopy equivalence, fundamental groups and higher homotopy groups, homology and cohomology, fiber bundles, spectral sequences and characteristic classes. Objects and examples considered in the text include the torus, the Mobius strip, the Klein bottle, closed surfaces, cell complexes and vector bundles.

## An Introduction To Algebraic Topology

**Author :**Andrew H. Wallace

**ISBN :**9780486152950

**Genre :**Mathematics

**File Size :**43. 32 MB

**Format :**PDF, ePub

**Download :**280

**Read :**502

This self-contained treatment begins with three chapters on the basics of point-set topology, after which it proceeds to homology groups and continuous mapping, barycentric subdivision, and simplicial complexes. 1961 edition.

## Lectures On Algebraic Topology

**Author :**Sergeĭ Vladimirovich Matveev

**ISBN :**303719023X

**Genre :**Algebraic topology

**File Size :**61. 42 MB

**Format :**PDF, Mobi

**Download :**306

**Read :**561

Algebraic topology is the study of the global properties of spaces by means of algebra. It is an important branch of modern mathematics with a wide degree of applicability to other fields, including geometric topology, differential geometry, functional analysis, differential equations, algebraic geometry, number theory, and theoretical physics. This book provides an introduction to the basic concepts and methods of algebraic topology for the beginner. It presents elements of both homology theory and homotopy theory, and includes various applications. The author's intention is to rely on the geometric approach by appealing to the reader's own intuition to help understanding. The numerous illustrations in the text also serve this purpose. Two features make the text different from the standard literature: first, special attention is given to providing explicit algorithms for calculating the homology groups and for manipulating the fundamental groups. Second, the book contains many exercises, all of which are supplied with hints or solutions. This makes the book suitable for both classroom use and for independent study.