bayesian methods in epidemiology

Download Book Bayesian Methods In Epidemiology in PDF format. You can Read Online Bayesian Methods In Epidemiology here in PDF, EPUB, Mobi or Docx formats.

Bayesian Methods In Epidemiology

Author : Lyle D. Broemeling
ISBN : 9781466564978
Genre : Mathematics
File Size : 28. 14 MB
Format : PDF
Download : 878
Read : 1031

Get This Book


Written by a biostatistics expert with over 20 years of experience in the field, Bayesian Methods in Epidemiology presents statistical methods used in epidemiology from a Bayesian viewpoint. It employs the software package WinBUGS to carry out the analyses and offers the code in the text and for download online. The book examines study designs that investigate the association between exposure to risk factors and the occurrence of disease. It covers introductory adjustment techniques to compare mortality between states and regression methods to study the association between various risk factors and disease, including logistic regression, simple and multiple linear regression, categorical/ordinal regression, and nonlinear models. The text also introduces a Bayesian approach for the estimation of survival by life tables and illustrates other approaches to estimate survival, including a parametric model based on the Weibull distribution and the Cox proportional hazards (nonparametric) model. Using Bayesian methods to estimate the lead time of the modality, the author explains how to screen for a disease among individuals that do not exhibit any symptoms of the disease. With many examples and end-of-chapter exercises, this book is the first to introduce epidemiology from a Bayesian perspective. It shows epidemiologists how these Bayesian models and techniques are useful in studying the association between disease and exposure to risk factors.

Bayesian Methods For Repeated Measures

Author : Lyle D. Broemeling
ISBN : 9781482248203
Genre : Mathematics
File Size : 31. 26 MB
Format : PDF
Download : 123
Read : 1108

Get This Book


Analyze Repeated Measures Studies Using Bayesian Techniques Going beyond standard non-Bayesian books, Bayesian Methods for Repeated Measures presents the main ideas for the analysis of repeated measures and associated designs from a Bayesian viewpoint. It describes many inferential methods for analyzing repeated measures in various scientific areas, especially biostatistics. The author takes a practical approach to the analysis of repeated measures. He bases all the computing and analysis on the WinBUGS package, which provides readers with a platform that efficiently uses prior information. The book includes the WinBUGS code needed to implement posterior analysis and offers the code for download online. Accessible to both graduate students in statistics and consulting statisticians, the book introduces Bayesian regression techniques, preliminary concepts and techniques fundamental to the analysis of repeated measures, and the most important topic for repeated measures studies: linear models. It presents an in-depth explanation of estimating the mean profile for repeated measures studies, discusses choosing and estimating the covariance structure of the response, and expands the representation of a repeated measure to general mixed linear models. The author also explains the Bayesian analysis of categorical response data in a repeated measures study, Bayesian analysis for repeated measures when the mean profile is nonlinear, and a Bayesian approach to missing values in the response variable.

Bayesian Biostatistics

Author : Emmanuel Lesaffre
ISBN : 9781118314579
Genre : Medical
File Size : 76. 51 MB
Format : PDF, ePub
Download : 278
Read : 292

Get This Book


The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. In addition, computational advances have allowed for more complex models to be fitted routinely to realistic data sets. Through examples, exercises and a combination of introductory and more advanced chapters, this book provides an invaluable understanding of the complex world of biomedical statistics illustrated via a diverse range of applications taken from epidemiology, exploratory clinical studies, health promotion studies, image analysis and clinical trials. Key Features: Provides an authoritative account of Bayesian methodology, from its most basic elements to its practical implementation, with an emphasis on healthcare techniques. Contains introductory explanations of Bayesian principles common to all areas of application. Presents clear and concise examples in biostatistics applications such as clinical trials, longitudinal studies, bioassay, survival, image analysis and bioinformatics. Illustrated throughout with examples using software including WinBUGS, OpenBUGS, SAS and various dedicated R programs. Highlights the differences between the Bayesian and classical approaches. Supported by an accompanying website hosting free software and case study guides. Bayesian Biostatistics introduces the reader smoothly into the Bayesian statistical methods with chapters that gradually increase in level of complexity. Master students in biostatistics, applied statisticians and all researchers with a good background in classical statistics who have interest in Bayesian methods will find this book useful.

Bayesian Methods For Data Analysis Third Edition

Author : Bradley P. Carlin
ISBN : 1584886986
Genre : Mathematics
File Size : 25. 84 MB
Format : PDF, Docs
Download : 178
Read : 742

Get This Book


Broadening its scope to nonstatisticians, Bayesian Methods for Data Analysis, Third Edition provides an accessible introduction to the foundations and applications of Bayesian analysis. Along with a complete reorganization of the material, this edition concentrates more on hierarchical Bayesian modeling as implemented via Markov chain Monte Carlo (MCMC) methods and related data analytic techniques. New to the Third Edition New data examples, corresponding R and WinBUGS code, and homework problems Explicit descriptions and illustrations of hierarchical modeling—now commonplace in Bayesian data analysis A new chapter on Bayesian design that emphasizes Bayesian clinical trials A completely revised and expanded section on ranking and histogram estimation A new case study on infectious disease modeling and the 1918 flu epidemic A solutions manual for qualifying instructors that contains solutions, computer code, and associated output for every homework problem—available both electronically and in print Ideal for Anyone Performing Statistical Analyses Focusing on applications from biostatistics, epidemiology, and medicine, this text builds on the popularity of its predecessors by making it suitable for even more practitioners and students.

Modern Methods For Epidemiology

Author : Yu-Kang Tu
ISBN : 9789400730243
Genre : Medical
File Size : 40. 90 MB
Format : PDF, ePub, Docs
Download : 557
Read : 553

Get This Book


Routine applications of advanced statistical methods on real data have become possible in the last ten years because desktop computers have become much more powerful and cheaper. However, proper understanding of the challenging statistical theory behind those methods remains essential for correct application and interpretation, and rarely seen in the medical literature. Modern Methods for Epidemiology provides a concise introduction to recent development in statistical methodologies for epidemiological and biomedical researchers. Many of these methods have become indispensible tools for researchers working in epidemiology and medicine but are rarely discussed in details by standard textbooks of biostatistics or epidemiology. Contributors of this book are experienced researchers and experts in their respective fields. This textbook provides a solid starting point for those who are new to epidemiology, and for those looking for guidance in more modern statistical approaches to observational epidemiology. Epidemiological and biomedical researchers who wish to overcome the mathematical barrier of applying those methods to their research will find this book an accessible and helpful reference for self-learning and research. This book is also a good source for teaching postgraduate students in medical statistics or epidemiology.

Geographical And Environmental Epidemiology

Author : Paul Elliott
ISBN : 0192622358
Genre : Medical
File Size : 48. 76 MB
Format : PDF, Kindle
Download : 280
Read : 858

Get This Book


Requirements in terms of population data, disease incidence and mortality are considered and related to the scale at which a study is being carried out. Statistical methods are reviewed for large scale correlation studies, intermediate scale smoothing excercises, and small-scale clustering investigations, plus much more.

Bayesian Thinking Modeling And Computation

Author :
ISBN : 0080461174
Genre : Mathematics
File Size : 29. 74 MB
Format : PDF, ePub, Mobi
Download : 847
Read : 319

Get This Book


This volume describes how to develop Bayesian thinking, modelling and computation both from philosophical, methodological and application point of view. It further describes parametric and nonparametric Bayesian methods for modelling and how to use modern computational methods to summarize inferences using simulation. The book covers wide range of topics including objective and subjective Bayesian inferences with a variety of applications in modelling categorical, survival, spatial, spatiotemporal, Epidemiological, software reliability, small area and micro array data. The book concludes with a chapter on how to teach Bayesian thoughts to nonstatisticians. Critical thinking on causal effects Objective Bayesian philosophy Nonparametric Bayesian methodology Simulation based computing techniques Bioinformatics and Biostatistics

Modern Epidemiology

Author : Kenneth J. Rothman
ISBN : 0781755646
Genre : Medical
File Size : 40. 91 MB
Format : PDF, ePub, Mobi
Download : 473
Read : 1106

Get This Book


The thoroughly revised and updated Third Edition of the acclaimed Modern Epidemiology reflects both the conceptual development of this evolving science and the increasingly focal role that epidemiology plays in dealing with public health and medical problems. Coauthored by three leading epidemiologists, with sixteen additional contributors, this Third Edition is the most comprehensive and cohesive text on the principles and methods of epidemiologic research. The book covers a broad range of concepts and methods, such as basic measures of disease frequency and associations, study design, field methods, threats to validity, and assessing precision. It also covers advanced topics in data analysis such as Bayesian analysis, bias analysis, and hierarchical regression. Chapters examine specific areas of research such as disease surveillance, ecologic studies, social epidemiology, infectious disease epidemiology, genetic and molecular epidemiology, nutritional epidemiology, environmental epidemiology, reproductive epidemiology, and clinical epidemiology.

Bayesian Methods For Finite Population Sampling

Author : Malay Ghosh
ISBN : 0412987716
Genre : Mathematics
File Size : 71. 75 MB
Format : PDF, ePub, Mobi
Download : 382
Read : 474

Get This Book


Assuming a basic knowledge of the frequentist approach to finite population sampling, Bayesian Methods for Finite Population Sampling describes Bayesian and predictive approaches to inferential problems with an emphasis on the likelihood principle. The authors demonstrate that a variety of levels of prior information can be used in survey sampling in a Bayesian manner. Situations considered range from a noninformative Bayesian justification of standard frequentist methods when the only prior information available is the belief in the exchangeability of the units to a full-fledged Bayesian model. Intended primarily for graduate students and researchers in finite population sampling, this book will also be of interest to statisticians who use sampling and lecturers and researchers in general statistics and biostatistics.

Bayesian Disease Mapping

Author : Andrew B. Lawson
ISBN : 9781351271745
Genre : Mathematics
File Size : 86. 94 MB
Format : PDF, Docs
Download : 298
Read : 423

Get This Book


Since the publication of the second edition, many new Bayesian tools and methods have been developed for space-time data analysis, the predictive modeling of health outcomes, and other spatial biostatistical areas. Exploring these new developments, Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Third Edition provides an up-to-date, cohesive account of the full range of Bayesian disease mapping methods and applications. In addition to the new material, the book also covers more conventional areas such as relative risk estimation, clustering, spatial survival analysis, and longitudinal analysis. After an introduction to Bayesian inference, computation, and model assessment, the text focuses on important themes, including disease map reconstruction, cluster detection, regression and ecological analysis, putative hazard modeling, analysis of multiple scales and multiple diseases, spatial survival and longitudinal studies, spatiotemporal methods, and map surveillance. It shows how Bayesian disease mapping can yield significant insights into georeferenced health data. The target audience for this text is public health specialists, epidemiologists, and biostatisticians who need to work with geo-referenced health data.

Top Download:

Best Books