bayesian networks with examples in r chapman hall crc texts in statistical science

Download Book Bayesian Networks With Examples In R Chapman Hall Crc Texts In Statistical Science in PDF format. You can Read Online Bayesian Networks With Examples In R Chapman Hall Crc Texts In Statistical Science here in PDF, EPUB, Mobi or Docx formats.

Bayesian Networks

Author : Marco Scutari
ISBN : 9781482225594
Genre : Computers
File Size : 36. 57 MB
Format : PDF, ePub, Mobi
Download : 947
Read : 744

Download Now


Understand the Foundations of Bayesian Networks—Core Properties and Definitions Explained Bayesian Networks: With Examples in R introduces Bayesian networks using a hands-on approach. Simple yet meaningful examples in R illustrate each step of the modeling process. The examples start from the simplest notions and gradually increase in complexity. The authors also distinguish the probabilistic models from their estimation with data sets. The first three chapters explain the whole process of Bayesian network modeling, from structure learning to parameter learning to inference. These chapters cover discrete Bayesian, Gaussian Bayesian, and hybrid networks, including arbitrary random variables. The book then gives a concise but rigorous treatment of the fundamentals of Bayesian networks and offers an introduction to causal Bayesian networks. It also presents an overview of R and other software packages appropriate for Bayesian networks. The final chapter evaluates two real-world examples: a landmark causal protein signaling network paper and graphical modeling approaches for predicting the composition of different body parts. Suitable for graduate students and non-statisticians, this text provides an introductory overview of Bayesian networks. It gives readers a clear, practical understanding of the general approach and steps involved.

Statistical Rethinking

Author : Richard McElreath
ISBN : 9781482253467
Genre : Mathematics
File Size : 52. 53 MB
Format : PDF, Docs
Download : 365
Read : 898

Download Now


Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.

First Complex Systems Digital Campus World E Conference 2015

Author : Pierre Parrend
ISBN : 9783319459011
Genre : Science
File Size : 44. 30 MB
Format : PDF, Docs
Download : 243
Read : 973

Download Now


This book contains the proceedings as well as invited papers for the first annual conference of the UNESCO Unitwin Complex System Digital Campus (CSDC), which is an international initiative gathering 120 Universities on four continents, and structured in ten E-Departments. First Complex Systems Digital Campus World E-Conference 2015 features chapters from the latest research results on theoretical questions of complex systems and their experimental domains. The content contained bridges the gap between the individual and the collective within complex systems science and new integrative sciences on topics such as: genes to organisms to ecosystems, atoms to materials to products, and digital media to the Internet. The conference breaks new ground through a dedicated video-conferencing system – a concept at the heart of the international UNESCO UniTwin, embracing scientists from low-income and distant countries. This book promotes an integrated system of research, education, and training. It also aims at contributing to global development by taking into account its social, economic, and cultural dimensions. First Complex Systems Digital Campus World E-Conference 2015 will appeal to students and researchers working in the fields of complex systems, statistical physics, computational intelligence, and biological physics.

Introduction To Probability With R

Author : Kenneth Baclawski
ISBN : 142006522X
Genre : Mathematics
File Size : 46. 61 MB
Format : PDF
Download : 908
Read : 199

Download Now


Based on a popular course taught by the late Gian-Carlo Rota of MIT, with many new topics covered as well, Introduction to Probability with R presents R programs and animations to provide an intuitive yet rigorous understanding of how to model natural phenomena from a probabilistic point of view. Although the R programs are small in length, they are just as sophisticated and powerful as longer programs in other languages. This brevity makes it easy for students to become proficient in R. This calculus-based introduction organizes the material around key themes. One of the most important themes centers on viewing probability as a way to look at the world, helping students think and reason probabilistically. The text also shows how to combine and link stochastic processes to form more complex processes that are better models of natural phenomena. In addition, it presents a unified treatment of transforms, such as Laplace, Fourier, and z; the foundations of fundamental stochastic processes using entropy and information; and an introduction to Markov chains from various viewpoints. Each chapter includes a short biographical note about a contributor to probability theory, exercises, and selected answers. The book has an accompanying website with more information.

Bayesian Networks In R

Author : Radhakrishnan Nagarajan
ISBN : 1461464455
Genre : Computers
File Size : 27. 58 MB
Format : PDF, ePub, Mobi
Download : 279
Read : 374

Download Now


Bayesian Networks in R with Applications in Systems Biology is unique as it introduces the reader to the essential concepts in Bayesian network modeling and inference in conjunction with examples in the open-source statistical environment R. The level of sophistication is also gradually increased across the chapters with exercises and solutions for enhanced understanding for hands-on experimentation of the theory and concepts. The application focuses on systems biology with emphasis on modeling pathways and signaling mechanisms from high-throughput molecular data. Bayesian networks have proven to be especially useful abstractions in this regard. Their usefulness is especially exemplified by their ability to discover new associations in addition to validating known ones across the molecules of interest. It is also expected that the prevalence of publicly available high-throughput biological data sets may encourage the audience to explore investigating novel paradigms using the approaches presented in the book.

Bayesian Networks And Decision Graphs

Author : Finn V. Jensen
ISBN : 0387952594
Genre : Computers
File Size : 61. 98 MB
Format : PDF, ePub, Mobi
Download : 629
Read : 1331

Download Now


A practical guide to normative systems: Causal and bayesian networks; Building models; learning, adaptation, and tuning; Decision graphs. Algorithms ofr normative systems: Belief updating in bayesian networks; Bayesian network analysis tools; Algorithms ofr influence diagrams. List of notation.

Extending The Linear Model With R

Author : Julian J. Faraway
ISBN : 0203492285
Genre : Mathematics
File Size : 34. 75 MB
Format : PDF, Kindle
Download : 945
Read : 1233

Download Now


Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway's critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author's treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the data described in the book is available at http://people.bath.ac.uk/jjf23/ELM/ Statisticians need to be familiar with a broad range of ideas and techniques. This book provides a well-stocked toolbox of methodologies, and with its unique presentation of these very modern statistical techniques, holds the potential to break new ground in the way graduate-level courses in this area are taught.

Top Download:

Best Books