boosting foundations and algorithms adaptive computation and machine learning series

Download Book Boosting Foundations And Algorithms Adaptive Computation And Machine Learning Series in PDF format. You can Read Online Boosting Foundations And Algorithms Adaptive Computation And Machine Learning Series here in PDF, EPUB, Mobi or Docx formats.

Boosting

Author : Robert E. Schapire
ISBN : 9780262017183
Genre : Computers
File Size : 62. 78 MB
Format : PDF, ePub, Mobi
Download : 682
Read : 1029

Get This Book


Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate "rules of thumb." A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. The book begins with a general introduction to machine learning algorithms and their analysis; then explores the core theory of boosting, especially its ability to generalize; examines some of the myriad other theoretical viewpoints that help to explain and understand boosting; provides practical extensions of boosting for more complex learning problems; and finally presents a number of advanced theoretical topics. Numerous applications and practical illustrations are offered throughout.

Big Data Bigdata 2018

Author : Francis Y. L. Chin
ISBN : 9783319943015
Genre : Computers
File Size : 71. 86 MB
Format : PDF, ePub
Download : 950
Read : 1171

Get This Book


This volume constitutes the proceedings of the 7th International Conference on BIGDATA 2018, held as Part of SCF 2018 in Seattle, WA, USA in June 2018. The 22 full papers together with 10 short papers published in this volume were carefully reviewed and selected from 97 submissions. They are organized in topical sections such as Data analysis, data as a service, services computing, data conversion, data storage, data centers, dataflow architectures, data compression, data exchange, data modeling, databases, and data management.

Foundations Of Machine Learning

Author : Mehryar Mohri
ISBN : 9780262304733
Genre : Computers
File Size : 57. 82 MB
Format : PDF
Download : 474
Read : 1213

Get This Book


This graduate-level textbook introduces fundamental concepts and methods in machine learning. It describes several important modern algorithms, provides the theoretical underpinnings of these algorithms, and illustrates key aspects for their application. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning fills the need for a general textbook that also offers theoretical details and an emphasis on proofs. Certain topics that are often treated with insufficient attention are discussed in more detail here; for example, entire chapters are devoted to regression, multi-class classification, and ranking. The first three chapters lay the theoretical foundation for what follows, but each remaining chapter is mostly self-contained. The appendix offers a concise probability review, a short introduction to convex optimization, tools for concentration bounds, and several basic properties of matrices and norms used in the book.The book is intended for graduate students and researchers in machine learning, statistics, and related areas; it can be used either as a textbook or as a reference text for a research seminar.

Elements Of Causal Inference

Author : Jonas Peters
ISBN : 9780262037310
Genre : Computers
File Size : 59. 65 MB
Format : PDF, ePub, Mobi
Download : 763
Read : 427

Get This Book


The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.

Transportation And Information

Author : Piyushimita Vonu Thakuriah
ISBN : UCBK:C101992282
Genre : Computers
File Size : 78. 11 MB
Format : PDF, ePub
Download : 774
Read : 846

Get This Book


Transformations in wireless connectivity and location-aware technologies hold the promise of bringing a sea-change in the way transportation information is generated and used in the future. Sensors in the transportation system, when integrated with those in other sectors (for example, energy, utility and health) have the potential to foster novel new ways of improving livability and sustainability. The end-result of these developments has been somewhat contradictory. Although automation in the transportation environment has become increasingly widespread, the level of involvement and active participation by people, in terms of co-creation and contribution of information, has also increased. As a result, the following two major trends have been observed: (1) increases in Machine-to- Machine (M2M) communications; and (2) increases in the variety and volume of User-Generated Content. In this transportation paradigm, the pervasive use of Information and Communication Technologies will serve as the foundation for mobility intelligence towards an “ubiquitous information-centered mobility environment”. However, many technical and operational questions, as well as social, management and legal challenges present themselves in the transformation to this vision. The book presents a non-technical review of research and initiatives and a discussion of such opportunities and challenges.

Machine Learning Mit Python

Author : Sebastian Raschka
ISBN : 9783958454248
Genre : Computers
File Size : 76. 61 MB
Format : PDF
Download : 495
Read : 899

Get This Book



Data Mining

Author : Ian H. Witten
ISBN : 3446215336
Genre :
File Size : 90. 33 MB
Format : PDF, ePub, Docs
Download : 902
Read : 617

Get This Book



Das Geheimnis Des Menschlichen Denkens

Author : Ray Kurzweil
ISBN : 9783944203164
Genre : Science
File Size : 64. 45 MB
Format : PDF, ePub, Docs
Download : 493
Read : 655

Get This Book


Der Wettlauf um das Gehirn hat begonnen. Sowohl die EU als auch die USA haben gewaltige Forschungsprojekte ins Leben gerufen um das Geheimnis des menschlichen Denkens zu entschlüsseln. 2023 soll es dann soweit sein: Das menschliche Gehirn kann vollständig simuliert werden. In "Das Geheimnis des menschlichen Denkens" gewährt Googles Chefingenieur Ray Kurzweil einen spannenden Einblick in das Reverse Engineering des Gehirns. Er legt dar, wie mithilfe der Mustererkennungstheorie des Geistes der ungeheuren Komplexität des Gehirns beizukommen ist und wirft einen ebenso präzisen wie überraschenden Blick auf die am Horizont sich bereits abzeichnende Zukunft. Ist das menschliche Gehirn erst einmal simuliert, wird künstliche Intelligenz die Fähigkeiten des Menschen schon bald übertreffen. Ein Ereignis, das Kurzweil aufgrund der bereits in "Menschheit 2.0" entworfenen exponentiellen Wachstumskurve der Informationstechnologien bereits für das Jahr 2029 prognostiziert. Aber was dann? Kurzweil ist zuversichtlich, dass die Vorteile künstlicher Intelligenz mögliche Bedrohungsszenarien überwiegen und sie uns entscheidend dabei hilft, uns weiterzuentwickeln und die Herausforderungen der Zukunft zu meistern.

Statistik Workshop F R Programmierer

Author : Allen B. Downey
ISBN : 9783868993431
Genre : Computers
File Size : 33. 29 MB
Format : PDF, Kindle
Download : 202
Read : 481

Get This Book


Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Self Adaptive Systems For Machine Intelligence

Author : Haibo He
ISBN : 1118025598
Genre : Computers
File Size : 58. 50 MB
Format : PDF, ePub, Docs
Download : 423
Read : 1126

Get This Book


This book will advance the understanding and application of self-adaptive intelligent systems; therefore it will potentially benefit the long-term goal of replicating certain levels of brain-like intelligence in complex and networked engineering systems. It will provide new approaches for adaptive systems within uncertain environments. This will provide an opportunity to evaluate the strengths and weaknesses of the current state-of-the-art of knowledge, give rise to new research directions, and educate future professionals in this domain. Self-adaptive intelligent systems have wide applications from military security systems to civilian daily life. In this book, different application problems, including pattern recognition, classification, image recovery, and sequence learning, will be presented to show the capability of the proposed systems in learning, memory, and prediction. Therefore, this book will also provide potential new solutions to many real-world applications.

Top Download:

Best Books