brownian motion martingales and stochastic calculus graduate texts in mathematics

Download Book Brownian Motion Martingales And Stochastic Calculus Graduate Texts In Mathematics in PDF format. You can Read Online Brownian Motion Martingales And Stochastic Calculus Graduate Texts In Mathematics here in PDF, EPUB, Mobi or Docx formats.

Brownian Motion Martingales And Stochastic Calculus

Author : Jean-François Le Gall
ISBN : 9783319310893
Genre : Mathematics
File Size : 71. 12 MB
Format : PDF, Kindle
Download : 711
Read : 690

Get This Book


This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô’s formula, the optional stopping theorem and Girsanov’s theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested in such developments. Beginning graduate or advanced undergraduate students will benefit from this detailed approach to an essential area of probability theory. The emphasis is on concise and efficient presentation, without any concession to mathematical rigor. The material has been taught by the author for several years in graduate courses at two of the most prestigious French universities. The fact that proofs are given with full details makes the book particularly suitable for self-study. The numerous exercises help the reader to get acquainted with the tools of stochastic calculus.

Brownian Motion And Stochastic Calculus

Author : Ioannis Karatzas
ISBN : 9781461209492
Genre : Mathematics
File Size : 90. 58 MB
Format : PDF
Download : 663
Read : 702

Get This Book


A graduate-course text, written for readers familiar with measure-theoretic probability and discrete-time processes, wishing to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed, illustrated by results concerning representations of martingales and change of measure on Wiener space, which in turn permit a presentation of recent advances in financial economics. The book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The whole is backed by a large number of problems and exercises.

Continuous Martingales And Brownian Motion

Author : Daniel Revuz
ISBN : 9783662064009
Genre : Mathematics
File Size : 50. 36 MB
Format : PDF
Download : 916
Read : 1168

Get This Book


"This is a magnificent book! Its purpose is to describe in considerable detail a variety of techniques used by probabilists in the investigation of problems concerning Brownian motion....This is THE book for a capable graduate student starting out on research in probability: the effect of working through it is as if the authors are sitting beside one, enthusiastically explaining the theory, presenting further developments as exercises." –BULLETIN OF THE L.M.S.

Probability And Stochastics

Author : Erhan Çınlar
ISBN : 0387878599
Genre : Mathematics
File Size : 75. 3 MB
Format : PDF
Download : 820
Read : 759

Get This Book


This text is an introduction to the modern theory and applications of probability and stochastics. The style and coverage is geared towards the theory of stochastic processes, but with some attention to the applications. In many instances the gist of the problem is introduced in practical, everyday language and then is made precise in mathematical form. The first four chapters are on probability theory: measure and integration, probability spaces, conditional expectations, and the classical limit theorems. There follows chapters on martingales, Poisson random measures, Levy Processes, Brownian motion, and Markov Processes. Special attention is paid to Poisson random measures and their roles in regulating the excursions of Brownian motion and the jumps of Levy and Markov processes. Each chapter has a large number of varied examples and exercises. The book is based on the author’s lecture notes in courses offered over the years at Princeton University. These courses attracted graduate students from engineering, economics, physics, computer sciences, and mathematics. Erhan Cinlar has received many awards for excellence in teaching, including the President’s Award for Distinguished Teaching at Princeton University. His research interests include theories of Markov processes, point processes, stochastic calculus, and stochastic flows. The book is full of insights and observations that only a lifetime researcher in probability can have, all told in a lucid yet precise style.

Brownian Motion Calculus

Author : Ubbo F. Wiersema
ISBN : 9780470021712
Genre : Business & Economics
File Size : 85. 79 MB
Format : PDF, Mobi
Download : 901
Read : 504

Get This Book


Brownian Motion Calculus presents the basics of Stochastic Calculus with a focus on the valuation of financial derivatives. It is intended as an accessible introduction to the technical literature. A clear distinction has been made between the mathematics that is convenient for a first introduction, and the more rigorous underpinnings which are best studied from the selected technical references. The inclusion of fully worked out exercises makes the book attractive for self study. Standard probability theory and ordinary calculus are the prerequisites. Summary slides for revision and teaching can be found on the book website.

Stochastic Integration And Differential Equations

Author : Philip E. Protter
ISBN : 9783662100615
Genre : Mathematics
File Size : 82. 54 MB
Format : PDF, Docs
Download : 242
Read : 1090

Get This Book


It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, the more general version of the Girsanov theorem due to Lenglart, the Kazamaki-Novikov criteria for exponential local martingales to be martingales, and a modern treatment of compensators. Chapter 4 treats sigma martingales (important in finance theory) and gives a more comprehensive treatment of martingale representation, including both the Jacod-Yor theory and Emery’s examples of martingales that actually have martingale representation (thus going beyond the standard cases of Brownian motion and the compensated Poisson process). New topics added include an introduction to the theory of the expansion of filtrations, a treatment of the Fefferman martingale inequality, and that the dual space of the martingale space H^1 can be identified with BMO martingales. Solutions to selected exercises are available at the web site of the author, with current URL http://www.orie.cornell.edu/~protter/books.html.

Brownian Motion

Author : René L. Schilling
ISBN : 9783110307306
Genre : Mathematics
File Size : 57. 68 MB
Format : PDF, ePub
Download : 625
Read : 191

Get This Book


Stochastic processes occur everywhere in sciences and engineering, and need to be understood by applied mathematicians, engineers and scientists alike. This is a first course introducing the reader gently to the subject. Brownian motions are a stochastic process, central to many applications and easy to treat.

Stochastic Calculus Of Variations In Mathematical Finance

Author : Paul Malliavin
ISBN : 9783540307990
Genre : Business & Economics
File Size : 29. 49 MB
Format : PDF, ePub, Docs
Download : 909
Read : 259

Get This Book


Highly esteemed author Topics covered are relevant and timely

Adventures In Stochastic Processes

Author : Sidney I. Resnick
ISBN : 9781461203872
Genre : Mathematics
File Size : 57. 73 MB
Format : PDF, ePub, Mobi
Download : 408
Read : 598

Get This Book


Stochastic processes are necessary ingredients for building models of a wide variety of phenomena exhibiting time varying randomness. This text offers easy access to this fundamental topic for many students of applied sciences at many levels. It includes examples, exercises, applications, and computational procedures. It is uniquely useful for beginners and non-beginners in the field. No knowledge of measure theory is presumed.

Stochastic Calculus

Author : Mircea Grigoriu
ISBN : 9780817682286
Genre : Mathematics
File Size : 49. 23 MB
Format : PDF, ePub
Download : 629
Read : 251

Get This Book


Algebraic, differential, and integral equations are used in the applied sciences, en gineering, economics, and the social sciences to characterize the current state of a physical, economic, or social system and forecast its evolution in time. Generally, the coefficients of and/or the input to these equations are not precisely known be cause of insufficient information, limited understanding of some underlying phe nomena, and inherent randonmess. For example, the orientation of the atomic lattice in the grains of a polycrystal varies randomly from grain to grain, the spa tial distribution of a phase of a composite material is not known precisely for a particular specimen, bone properties needed to develop reliable artificial joints vary significantly with individual and age, forces acting on a plane from takeoff to landing depend in a complex manner on the environmental conditions and flight pattern, and stock prices and their evolution in time depend on a large number of factors that cannot be described by deterministic models. Problems that can be defined by algebraic, differential, and integral equations with random coefficients and/or input are referred to as stochastic problems. The main objective of this book is the solution of stochastic problems, that is, the determination of the probability law, moments, and/or other probabilistic properties of the state of a physical, economic, or social system. It is assumed that the operators and inputs defining a stochastic problem are specified.

Top Download:

Best Books