combustion science and engineering computational mechanics and applied analysis

Download Book Combustion Science And Engineering Computational Mechanics And Applied Analysis in PDF format. You can Read Online Combustion Science And Engineering Computational Mechanics And Applied Analysis here in PDF, EPUB, Mobi or Docx formats.

Combustion Science And Engineering

Author : Kalyan Annamalai
ISBN : 0849320712
Genre : Technology & Engineering
File Size : 20. 18 MB
Format : PDF, ePub, Mobi
Download : 542
Read : 1075

Get This Book

Students embarking on their studies in chemical, mechanical, aerospace, energy, and environmental engineering will face continually changing combustion problems, such as pollution control and energy efficiency, throughout their careers. Approaching these challenges requires a deep familiarity with the fundamental theory, mathematics, and physical concepts of combustion. Based on more than two decades of teaching experience, Combustion Science and Engineering lays the necessary groundwork while using an illustrative, hands-on approach. Taking a down-to-earth perspective, the book avoids heavy mathematics in the first seven chapters and in Chapter 17 (pollutants formation and destruction), but considers molecular concepts and delves into engineering details. It begins with an outline of thermodynamics; basics of thermochemistry and chemical equilibrium; descriptions of solid, liquid, and gaseous fuels; chemical kinetics and mass transfer; and applications of theory to practical systems. Beginning in chapter 8, the authors provide a detailed treatment of differential forms of conservation equations; analyses of fuel combustion including jet combustion and boundary layer problems; ignition; flame propagation; interactive and group combustion; pollutant formation and control; and turbulent combustion. In addition, this textbook includes abundant examples, illustrations, and exercises, as well as spreadsheet software in combustion available for download. This software allows students to work out the examples found in the text. Combustion Science and Engineering imparts the skills and foundational knowledge necessary for students to successfully approach and solve new problems.

Numerical And Analytical Methods With Matlab

Author : William Bober
ISBN : 9781420093575
Genre : Technology & Engineering
File Size : 88. 28 MB
Format : PDF, ePub, Mobi
Download : 901
Read : 1268

Get This Book

Numerical and Analytical Methods with MATLAB® presents extensive coverage of the MATLAB programming language for engineers. It demonstrates how the built-in functions of MATLAB can be used to solve systems of linear equations, ODEs, roots of transcendental equations, statistical problems, optimization problems, control systems problems, and stress analysis problems. These built-in functions are essentially black boxes to students. By combining MATLAB with basic numerical and analytical techniques, the mystery of what these black boxes might contain is somewhat alleviated. This classroom-tested text first reviews the essentials involved in writing computer programs as well as fundamental aspects of MATLAB. It next explains how matrices can solve problems of linear equations, how to obtain the roots of algebraic and transcendental equations, how to evaluate integrals, and how to solve various ODEs. After exploring the features of Simulink, the book discusses curve fitting, optimization problems, and PDE problems, such as the vibrating string, unsteady heat conduction, and sound waves. The focus then shifts to the solution of engineering problems via iteration procedures, differential equations via Laplace transforms, and stress analysis problems via the finite element method. The final chapter examines control systems theory, including the design of single-input single-output (SISO) systems. Two Courses in One Textbook The first six chapters are appropriate for a lower level course at the sophomore level. The remaining chapters are ideal for a course at the senior undergraduate or first-year graduate level. Most of the chapters contain projects that require students to write a computer program in MATLAB that produces tables, graphs, or both. Many sample MATLAB programs (scripts) in the text provide guidance on completing these projects.

Micromechanical Analysis And Multi Scale Modeling Using The Voronoi Cell Finite Element Method

Author : Somnath Ghosh
ISBN : 9781420094381
Genre : Technology & Engineering
File Size : 66. 57 MB
Format : PDF
Download : 420
Read : 525

Get This Book

As multi-phase metal/alloy systems and polymer, ceramic, or metal matrix composite materials are increasingly being used in industry, the science and technology for these heterogeneous materials has advanced rapidly. By extending analytical and numerical models, engineers can analyze failure characteristics of the materials before they are integrated into the design process. Micromechanical Analysis and Multi-Scale Modeling Using the Voronoi Cell Finite Element Method addresses the key problem of multi-scale failure and deformation of materials that have complex microstructures. The book presents a comprehensive computational mechanics and materials science–based framework for multi-scale analysis. The focus is on micromechanical analysis using the Voronoi cell finite element method (VCFEM) developed by the author and his research group for the efficient and accurate modeling of materials with non-uniform heterogeneous microstructures. While the topics covered in the book encompass the macroscopic scale of structural components and the microscopic scale of constituent heterogeneities like inclusions or voids, the general framework may be extended to other scales as well. The book presents the major components of the multi-scale analysis framework in three parts. Dealing with multi-scale image analysis and characterization, the first part of the book covers 2D and 3D image-based microstructure generation and tessellation into Voronoi cells. The second part develops VCFEM for micromechanical stress and failure analysis, as well as thermal analysis, of extended microstructural regions. It examines a range of problems solved by VCFEM, from heat transfer and stress-strain analysis of elastic, elastic-plastic, and viscoplastic material microstructures to microstructural damage models including interfacial debonding and ductile failure. Establishing the multi-scale framework for heterogeneous materials with and without damage, the third part of the book discusses adaptive concurrent multi-scale analysis incorporating bottom-up and top-down modeling. Including numerical examples and a CD-ROM with VCFEM source codes and input/output files, this book is a valuable reference for researchers, engineers, and professionals involved with predicting the performance and failure of materials in structure-materials interactions.

Research Directions In Computational Mechanics

Author :
ISBN : NAP:14786
Genre : Technology & Engineering
File Size : 50. 2 MB
Format : PDF, Docs
Download : 314
Read : 1100

Get This Book

Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various products--important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.

Advanced Thermodynamics Engineering Second Edition

Author : Kalyan Annamalai
ISBN : 9781439805725
Genre : Science
File Size : 64. 83 MB
Format : PDF, Mobi
Download : 201
Read : 879

Get This Book

Advanced Thermodynamics Engineering, Second Edition is designed for readers who need to understand and apply the engineering physics of thermodynamic concepts. It employs a self-teaching format that reinforces presentation of critical concepts, mathematical relationships, and equations with concrete physical examples and explanations of applications—to help readers apply principles to their own real-world problems. Less Mathematical/Theoretical Derivations—More Focus on Practical Application Because both students and professionals must grasp theory almost immediately in this ever-changing electronic era, this book—now completely in decimal outline format—uses a phenomenological approach to problems, making advanced concepts easier to understand. After a decade teaching advanced thermodynamics, the authors infuse their own style and tailor content based on their observations as professional engineers, as well as feedback from their students. Condensing more esoteric material to focus on practical uses for this continuously evolving area of science, this book is filled with revised problems and extensive tables on thermodynamic properties and other useful information. The authors include an abundance of examples, figures, and illustrations to clarify presented ideas, and additional material and software tools are available for download. The result is a powerful, practical instructional tool that gives readers a strong conceptual foundation on which to build a solid, functional understanding of thermodynamics engineering.

Numerical Modeling Of Coupled Phenomena In Science And Engineering

Author : Mario César Suárez Arriaga
ISBN : 0203886224
Genre : Technology & Engineering
File Size : 25. 39 MB
Format : PDF, ePub, Mobi
Download : 553
Read : 931

Get This Book

Mathematics is a universal language. Differential equations, mathematical modeling, numerical methods and computation form the underlying infrastructure of engineering and the sciences. In this context mathematical modeling is a very powerful tool for studying engineering problems, natural systems and human society. This interdisciplinary book contains a comprehensive overview, including practical examples, of the progress achieved to date in the modeling of coupled phenomena, computational mathematics and mechanics, heat transfer, fluid-structure interactions, biomechanics, and the flow of mass and energy in porous media. Numerical subjects such as grid generation, optimization, finite elements, finite differences, spectral methods, boundary elements, finite volumes and meshless methods are also discussed in detail using real examples. The book provides a thorough presentation of the existing numerical techniques with specific applications to concrete, practical topics. The models and solutions presented here describe various systems: mechanical, biological, geophysical, technical, ecological, etc. The book is organized in thirty six chapters, each written by distinguished experts in their respective fields. The topics presented cover the current state of knowledge in numerical engineering practice including recent and ongoing developments and the presentation of new ideas for future research on applied computational engineering mathematics. The book will be of interest to scientists working in engineering (structural, civil, mechanical), geology, geophysics, aquifer research, petroleum engineering, applied mathematics, and physics, as well as students in any of these areas.

Splitting Methods In Communication Imaging Science And Engineering

Author : Roland Glowinski
ISBN : 9783319415895
Genre : Mathematics
File Size : 78. 8 MB
Format : PDF, Kindle
Download : 914
Read : 467

Get This Book

This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas.

Computational Fluid Dynamics In Fire Engineering

Author : Guan Heng Yeoh
ISBN : 0080570038
Genre : Technology & Engineering
File Size : 38. 54 MB
Format : PDF, ePub, Mobi
Download : 653
Read : 880

Get This Book

Fire and combustion presents a significant engineering challenge to mechanical, civil and dedicated fire engineers, as well as specialists in the process and chemical, safety, buildings and structural fields. We are reminded of the tragic outcomes of ‘untenable’ fire disasters such as at King’s Cross underground station or Switzerland’s St Gotthard tunnel. In these and many other cases, computational fluid dynamics (CFD) is at the forefront of active research into unravelling the probable causes of fires and helping to design structures and systems to ensure that they are less likely in the future. Computational fluid dynamics (CFD) is routinely used as an analysis tool in fire and combustion engineering as it possesses the ability to handle the complex geometries and characteristics of combustion and fire. This book shows engineering students and professionals how to understand and use this powerful tool in the study of combustion processes, and in the engineering of safer or more fire resistant (or conversely, more fire-efficient) structures. No other book is dedicated to computer-based fire dynamics tools and systems. It is supported by a rigorous pedagogy, including worked examples to illustrate the capabilities of different models, an introduction to the essential aspects of fire physics, examination and self-test exercises, fully worked solutions and a suite of accompanying software for use in industry standard modeling systems. · Computational Fluid Dynamics (CFD) is widely used in engineering analysis; this is the only book dedicated to CFD modeling analysis in fire and combustion engineering · Strong pedagogic features mean this book can be used as a text for graduate level mechanical, civil, structural and fire engineering courses, while its coverage of the latest techniques and industry standard software make it an important reference for researchers and professional engineers in the mechanical and structural sectors, and by fire engineers, safety consultants and regulators · Strong author team (CUHK is a recognized centre of excellence in fire eng) deliver an expert package for students and professionals, showing both theory and applications. Accompanied by CFD modeling code and ready to use simulations to run in industry-standard ANSYS-CFX and Fluent software.

Graduate Programs In Engineering Applied Sciences 2008

Author : Peterson's
ISBN : 0768924030
Genre : Education
File Size : 33. 23 MB
Format : PDF, Docs
Download : 608
Read : 374

Get This Book

Peterson's six-volume Graduate and Professional Programs is the trusted source for accurate, up-to-date graduate program information. With complete details on more than 44,000 master, doctoral, and first-professional degree programs in 476 disciplines at more than 2,000 accredited colleges and universities in the U.S. and Canada, this series is the perfect for students, acadmic advisors, administrators, researchers, scholars, professionals, and librarians.

Computational Fluid Mechanics

Author : Alexandre Joel Chorin
ISBN : 9781483271552
Genre : Technology & Engineering
File Size : 75. 73 MB
Format : PDF, ePub, Mobi
Download : 396
Read : 379

Get This Book

Computational Fluid Mechanics: Selected Papers compiles papers on computational fluid dynamics written between 1967 and 1982. This book emphasizes the numerical solution of the equations of fluid mechanics in circumstances where the viscosity is small. The vortex and projection methods, numerical solution of problems in kinetic theory, combustion theory, and gas dynamics are also discussed. This publication elaborates that turbulence in fluids is dominated by the mechanics of vorticity, and many of the methods are based on vortex representations of the flow. The convergence of vortex calculations in three space dimensions and motion of vortex filaments are likewise deliberated. This compilation is a good source for physicists and students researching on computational fluid mechanics.

Top Download:

Best Books