complex manifolds and deformation of complex structures classics in mathematics

Download Book Complex Manifolds And Deformation Of Complex Structures Classics In Mathematics in PDF format. You can Read Online Complex Manifolds And Deformation Of Complex Structures Classics In Mathematics here in PDF, EPUB, Mobi or Docx formats.

Complex Manifolds And Deformation Of Complex Structures

Author : K. Kodaira
ISBN : 9781461385905
Genre : Mathematics
File Size : 35. 30 MB
Format : PDF, ePub, Mobi
Download : 707
Read : 695

Get This Book

Complex Manifolds

Author : James A. Morrow
ISBN : 9780821840559
Genre : Mathematics
File Size : 66. 67 MB
Format : PDF, Kindle
Download : 473
Read : 1322

Get This Book

This volume serves as an introduction to the Kodaira-Spencer theory of deformations of complex structures. Based on notes taken by James Morrow from lectures given by Kunihiko Kodaira at Stanford University in 1965-1966, the book gives the original proof of the Kodaira embedding theorem, showing that the restricted class of Kahler manifolds called Hodge manifolds is algebraic. Included are the semicontinuity theorems and the local completeness theorem of Kuranishi. Readers are assumed to know some algebraic topology. Complete references are given for the results that are used from elliptic partial differential equations. The book is suitable for graduate students and researchers interested in abstract complex manifolds.

Complex Differential Geometry

Author : Fangyang Zheng
ISBN : 9780821829608
Genre : Mathematics
File Size : 20. 4 MB
Format : PDF, Docs
Download : 754
Read : 527

Get This Book

The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds.The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classification theory, providing readers with some concrete examples of complex manifolds. The last part is the main purpose of the book; in it, the author discusses metrics, connections, curvature, and the various roles they play in the study of complex manifolds. A significant amount of exercises are provided to enhance student comprehension and practical experience.

Complex Geometry

Author : Daniel Huybrechts
ISBN : 9783540266877
Genre : Mathematics
File Size : 26. 10 MB
Format : PDF, ePub, Mobi
Download : 293
Read : 182

Get This Book

Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)

Cohomological Aspects In Complex Non K Hler Geometry

Author : Daniele Angella
ISBN : 9783319024417
Genre : Mathematics
File Size : 76. 41 MB
Format : PDF, Docs
Download : 435
Read : 687

Get This Book

In these notes, we provide a summary of recent results on the cohomological properties of compact complex manifolds not endowed with a Kähler structure. On the one hand, the large number of developed analytic techniques makes it possible to prove strong cohomological properties for compact Kähler manifolds. On the other, in order to further investigate any of these properties, it is natural to look for manifolds that do not have any Kähler structure. We focus in particular on studying Bott-Chern and Aeppli cohomologies of compact complex manifolds. Several results concerning the computations of Dolbeault and Bott-Chern cohomologies on nilmanifolds are summarized, allowing readers to study explicit examples. Manifolds endowed with almost-complex structures, or with other special structures (such as, for example, symplectic, generalized-complex, etc.), are also considered.

An Introduction To Extremal K Hler Metrics

Author : Gábor Székelyhidi
ISBN : 9781470410476
Genre : Mathematics
File Size : 72. 20 MB
Format : PDF, ePub, Mobi
Download : 717
Read : 468

Get This Book

A basic problem in differential geometry is to find canonical metrics on manifolds. The best known example of this is the classical uniformization theorem for Riemann surfaces. Extremal metrics were introduced by Calabi as an attempt at finding a higher-dimensional generalization of this result, in the setting of Kähler geometry. This book gives an introduction to the study of extremal Kähler metrics and in particular to the conjectural picture relating the existence of extremal metrics on projective manifolds to the stability of the underlying manifold in the sense of algebraic geometry. The book addresses some of the basic ideas on both the analytic and the algebraic sides of this picture. An overview is given of much of the necessary background material, such as basic Kähler geometry, moment maps, and geometric invariant theory. Beyond the basic definitions and properties of extremal metrics, several highlights of the theory are discussed at a level accessible to graduate students: Yau's theorem on the existence of Kähler-Einstein metrics, the Bergman kernel expansion due to Tian, Donaldson's lower bound for the Calabi energy, and Arezzo-Pacard's existence theorem for constant scalar curvature Kähler metrics on blow-ups.

Deformation Theory

Author : Robin Hartshorne
ISBN : 9781441915962
Genre : Mathematics
File Size : 31. 92 MB
Format : PDF, ePub, Mobi
Download : 773
Read : 1089

Get This Book

The basic problem of deformation theory in algebraic geometry involves watching a small deformation of one member of a family of objects, such as varieties, or subschemes in a fixed space, or vector bundles on a fixed scheme. In this new book, Robin Hartshorne studies first what happens over small infinitesimal deformations, and then gradually builds up to more global situations, using methods pioneered by Kodaira and Spencer in the complex analytic case, and adapted and expanded in algebraic geometry by Grothendieck. The author includes numerous exercises, as well as important examples illustrating various aspects of the theory. This text is based on a graduate course taught by the author at the University of California, Berkeley.

Hodge Theory Complex Geometry And Representation Theory

Author : Mark Green
ISBN : 9781470410124
Genre : Mathematics
File Size : 80. 7 MB
Format : PDF, Kindle
Download : 308
Read : 1051

Get This Book

This monograph presents topics in Hodge theory and representation theory, two of the most active and important areas in contemporary mathematics. The underlying theme is the use of complex geometry to understand the two subjects and their relationships to one another--an approach that is complementary to what is in the literature. Finite-dimensional representation theory and complex geometry enter via the concept of Hodge representations and Hodge domains. Infinite-dimensional representation theory, specifically the discrete series and their limits, enters through the realization of these representations through complex geometry as pioneered by Schmid, and in the subsequent description of automorphic cohomology. For the latter topic, of particular importance is the recent work of Carayol that potentially introduces a new perspective in arithmetic automorphic representation theory. The present work gives a treatment of Carayol's work, and some extensions of it, set in a general complex geometric framework. Additional subjects include a description of the relationship between limiting mixed Hodge structures and the boundary orbit structure of Hodge domains, a general treatment of the correspondence spaces that are used to construct Penrose transforms and selected other topics from the recent literature. A co-publication of the AMS and CBMS.

Hodge Theory Mn 49

Author : Eduardo Cattani
ISBN : 9781400851478
Genre : Mathematics
File Size : 56. 68 MB
Format : PDF, Docs
Download : 288
Read : 623

Get This Book

This book provides a comprehensive and up-to-date introduction to Hodge theory—one of the central and most vibrant areas of contemporary mathematics—from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch-Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students and researchers. The exposition is as accessible as possible and doesn't require a deep background. At the same time, the book presents some topics at the forefront of current research. The book is divided between introductory and advanced lectures. The introductory lectures address Kähler manifolds, variations of Hodge structure, mixed Hodge structures, the Hodge theory of maps, period domains and period mappings, algebraic cycles (up to and including the Bloch-Beilinson conjecture) and Chow groups, sheaf cohomology, and a new treatment of Grothendieck’s algebraic de Rham theorem. The advanced lectures address a Hodge-theoretic perspective on Shimura varieties, the spread philosophy in the study of algebraic cycles, absolute Hodge classes (including a new, self-contained proof of Deligne’s theorem on absolute Hodge cycles), and variation of mixed Hodge structures. The contributors include Patrick Brosnan, James Carlson, Eduardo Cattani, François Charles, Mark Andrea de Cataldo, Fouad El Zein, Mark L. Green, Phillip A. Griffiths, Matt Kerr, Lê Dũng Tráng, Luca Migliorini, Jacob P. Murre, Christian Schnell, and Loring W. Tu.

Einstein Manifolds

Author : Arthur L. Besse
ISBN : 9783540743118
Genre : Mathematics
File Size : 46. 34 MB
Format : PDF, Mobi
Download : 677
Read : 743

Get This Book

Einstein's equations stem from General Relativity. In the context of Riemannian manifolds, an independent mathematical theory has developed around them. This is the first book which presents an overview of several striking results ensuing from the examination of Einstein’s equations in the context of Riemannian manifolds. Parts of the text can be used as an introduction to modern Riemannian geometry through topics like homogeneous spaces, submersions, or Riemannian functionals.

Top Download:

Best Books