computational fluid dynamics chapman hall crc numerical analysis and scientific computing series

Download Book Computational Fluid Dynamics Chapman Hall Crc Numerical Analysis And Scientific Computing Series in PDF format. You can Read Online Computational Fluid Dynamics Chapman Hall Crc Numerical Analysis And Scientific Computing Series here in PDF, EPUB, Mobi or Docx formats.

Computational Fluid Dynamics

Author : Frederic Magoules
ISBN : 9781439856611
Genre : Mathematics
File Size : 38. 97 MB
Format : PDF, Mobi
Download : 872
Read : 1294

Get This Book


Exploring new variations of classical methods as well as recent approaches appearing in the field, Computational Fluid Dynamics demonstrates the extensive use of numerical techniques and mathematical models in fluid mechanics. It presents various numerical methods, including finite volume, finite difference, finite element, spectral, smoothed particle hydrodynamics (SPH), mixed-element-volume, and free surface flow. Taking a unified point of view, the book first introduces the basis of finite volume, weighted residual, and spectral approaches. The contributors present the SPH method, a novel approach of computational fluid dynamics based on the mesh-free technique, and then improve the method using an arbitrary Lagrange Euler (ALE) formalism. They also explain how to improve the accuracy of the mesh-free integration procedure, with special emphasis on the finite volume particle method (FVPM). After describing numerical algorithms for compressible computational fluid dynamics, the text discusses the prediction of turbulent complex flows in environmental and engineering problems. The last chapter explores the modeling and numerical simulation of free surface flows, including future behaviors of glaciers. The diverse applications discussed in this book illustrate the importance of numerical methods in fluid mechanics. With research continually evolving in the field, there is no doubt that new techniques and tools will emerge to offer greater accuracy and speed in solving and analyzing even more fluid flow problems.

Numerical Techniques For Direct And Large Eddy Simulations

Author : Xi Jiang
ISBN : 1420075799
Genre : Mathematics
File Size : 58. 82 MB
Format : PDF, Kindle
Download : 582
Read : 1229

Get This Book


Compared to the traditional modeling of computational fluid dynamics, direct numerical simulation (DNS) and large-eddy simulation (LES) provide a very detailed solution of the flow field by offering enhanced capability in predicting the unsteady features of the flow field. In many cases, DNS can obtain results that are impossible using any other means while LES can be employed as an advanced tool for practical applications. Focusing on the numerical needs arising from the applications of DNS and LES, Numerical Techniques for Direct and Large-Eddy Simulations covers basic techniques for DNS and LES that can be applied to practical problems of flow, turbulence, and combustion. After introducing Navier–Stokes equations and the methodologies of DNS and LES, the book discusses boundary conditions for DNS and LES, along with time integration methods. It then describes the numerical techniques used in the DNS of incompressible and compressible flows. The book also presents LES techniques for simulating incompressible and compressible flows. The final chapter explores current challenges in DNS and LES. Helping readers understand the vast amount of literature in the field, this book explains how to apply relevant numerical techniques for practical computational fluid dynamics simulations and implement these methods in fluid dynamics computer programs.

Xml In Scientific Computing

Author : Constantine Pozrikidis
ISBN : 9781466512283
Genre : Computers
File Size : 47. 26 MB
Format : PDF, ePub, Docs
Download : 762
Read : 641

Get This Book


While the extensible markup language (XML) has received a great deal of attention in web programming and software engineering, far less attention has been paid to XML in mainstream computational science and engineering. Correcting this imbalance, XML in Scientific Computing introduces XML to scientists and engineers in a way that illustrates the similarities and differences with traditional programming languages and suggests new ways of saving and sharing the results of scientific calculations. The author discusses XML in the context of scientific computing, demonstrates how the extensible stylesheet language (XSL) can be used to perform various calculations, and explains how to create and navigate through XML documents using traditional languages such as Fortran, C++, and MATLAB®. A suite of computer programs are available on the author’s website.

Computational Methods In Plasma Physics

Author : Stephen Jardin
ISBN : 1439810958
Genre : Science
File Size : 32. 83 MB
Format : PDF, ePub, Mobi
Download : 916
Read : 1232

Get This Book


Assuming no prior knowledge of plasma physics or numerical methods, Computational Methods in Plasma Physics covers the computational mathematics and techniques needed to simulate magnetically confined plasmas in modern magnetic fusion experiments and future magnetic fusion reactors. Largely self-contained, the text presents the basic concepts necessary for the numerical solution of partial differential equations. Along with discussing numerical stability and accuracy, the author explores many of the algorithms used today in enough depth so that readers can analyze their stability, efficiency, and scaling properties. He focuses on mathematical models where the plasma is treated as a conducting fluid, since this is the most mature plasma model and most applicable to experiments. The book also emphasizes toroidal confinement geometries, particularly the tokamak—a very successful configuration for confining a high-temperature plasma. Many of the basic numerical techniques presented are also appropriate for equations encountered in a higher-dimensional phase space. One of the most challenging research areas in modern science is to develop suitable algorithms that lead to stable and accurate solutions that can span relevant time and space scales. This book provides an excellent working knowledge of the algorithms used by the plasma physics community, helping readers on their way to more advanced study.

Numerical Methods And Optimization

Author : Sergiy Butenko
ISBN : 9781466577787
Genre : Business & Economics
File Size : 48. 76 MB
Format : PDF
Download : 257
Read : 964

Get This Book


For students in industrial and systems engineering (ISE) and operations research (OR) to understand optimization at an advanced level, they must first grasp the analysis of algorithms, computational complexity, and other concepts and modern developments in numerical methods. Satisfying this prerequisite, Numerical Methods and Optimization: An Introduction combines the materials from introductory numerical methods and introductory optimization courses into a single text. This classroom-tested approach enriches a standard numerical methods syllabus with optional chapters on numerical optimization and provides a valuable numerical methods background for students taking an introductory OR or optimization course. The first part of the text introduces the necessary mathematical background, the digital representation of numbers, and different types of errors associated with numerical methods. The second part explains how to solve typical problems using numerical methods. Focusing on optimization methods, the final part presents basic theory and algorithms for linear and nonlinear optimization. The book assumes minimal prior knowledge of the topics. Taking a rigorous yet accessible approach to the material, it includes some mathematical proofs as samples of rigorous analysis but in most cases, uses only examples to illustrate the concepts. While the authors provide a MATLAB® guide and code available for download, the book can be used with other software packages.

Supercomputing

Author : Julian M. Kunkel
ISBN : 9783319075181
Genre : Computers
File Size : 88. 62 MB
Format : PDF, Docs
Download : 529
Read : 592

Get This Book


This book constitutes the refereed proceedings of the 29th International Supercomputing Conference, ISC 2014, held in Leipzig, Germany, in June 2014. The 34 revised full papers presented together were carefully reviewed and selected from 79 submissions. The papers cover the following topics: scalable applications with 50K+ cores; advances in algorithms; scientific libraries; programming models; architectures; performance models and analysis; automatic performance optimization; parallel I/O and energy efficiency.

High Performance Computing

Author : John Levesque
ISBN : 1420077066
Genre : Computers
File Size : 75. 69 MB
Format : PDF, Docs
Download : 751
Read : 560

Get This Book


High Performance Computing: Programming and Applications presents techniques that address new performance issues in the programming of high performance computing (HPC) applications. Omitting tedious details, the book discusses hardware architecture concepts and programming techniques that are the most pertinent to application developers for achieving high performance. Even though the text concentrates on C and Fortran, the techniques described can be applied to other languages, such as C++ and Java. Drawing on their experience with chips from AMD and systems, interconnects, and software from Cray Inc., the authors explore the problems that create bottlenecks in attaining good performance. They cover techniques that pertain to each of the three levels of parallelism: Message passing between the nodes Shared memory parallelism on the nodes or the multiple instruction, multiple data (MIMD) units on the accelerator Vectorization on the inner level After discussing architectural and software challenges, the book outlines a strategy for porting and optimizing an existing application to a large massively parallel processor (MPP) system. With a look toward the future, it also introduces the use of general purpose graphics processing units (GPGPUs) for carrying out HPC computations. A companion website at www.hybridmulticoreoptimization.com contains all the examples from the book, along with updated timing results on the latest released processors.

Pricing Derivatives Under L Vy Models

Author : Andrey Itkin
ISBN : 9781493967926
Genre : Mathematics
File Size : 88. 32 MB
Format : PDF
Download : 702
Read : 981

Get This Book


This monograph presents a novel numerical approach to solving partial integro-differential equations arising in asset pricing models with jumps, which greatly exceeds the efficiency of existing approaches. The method, based on pseudo-differential operators and several original contributions to the theory of finite-difference schemes, is new as applied to the Lévy processes in finance, and is herein presented for the first time in a single volume. The results within, developed in a series of research papers, are collected and arranged together with the necessary background material from Lévy processes, the modern theory of finite-difference schemes, the theory of M-matrices and EM-matrices, etc., thus forming a self-contained work that gives the reader a smooth introduction to the subject. For readers with no knowledge of finance, a short explanation of the main financial terms and notions used in the book is given in the glossary. The latter part of the book demonstrates the efficacy of the method by solving some typical problems encountered in computational finance, including structural default models with jumps, and local stochastic volatility models with stochastic interest rates and jumps. The author also adds extra complexity to the traditional statements of these problems by taking into account jumps in each stochastic component while all jumps are fully correlated, and shows how this setting can be efficiently addressed within the framework of the new method. Written for non-mathematicians, this book will appeal to financial engineers and analysts, econophysicists, and researchers in applied numerical analysis. It can also be used as an advance course on modern finite-difference methods or computational finance.

Combinatorial Scientific Computing

Author : Uwe Naumann
ISBN : 9781439827369
Genre : Computers
File Size : 89. 26 MB
Format : PDF, ePub, Mobi
Download : 554
Read : 1284

Get This Book


Combinatorial Scientific Computing explores the latest research on creating algorithms and software tools to solve key combinatorial problems on large-scale high-performance computing architectures. It includes contributions from international researchers who are pioneers in designing software and applications for high-performance computing systems. The book offers a state-of-the-art overview of the latest research, tool development, and applications. It focuses on load balancing and parallelization on high-performance computers, large-scale optimization, algorithmic differentiation of numerical simulation code, sparse matrix software tools, and combinatorial challenges and applications in large-scale social networks. The authors unify these seemingly disparate areas through a common set of abstractions and algorithms based on combinatorics, graphs, and hypergraphs. Combinatorial algorithms have long played a crucial enabling role in scientific and engineering computations and their importance continues to grow with the demands of new applications and advanced architectures. By addressing current challenges in the field, this volume sets the stage for the accelerated development and deployment of fundamental enabling technologies in high-performance scientific computing.

Computational Hydrodynamics Of Capsules And Biological Cells

Author : Constantine Pozrikidis
ISBN : 1439820066
Genre : Mathematics
File Size : 36. 38 MB
Format : PDF
Download : 339
Read : 745

Get This Book


Spanning biological, mathematical, computational, and engineering sciences, computational biofluiddynamics addresses a diverse family of problems involving fluid flow inside and around living organisms, organs, tissue, biological cells, and other biological materials. Computational Hydrodynamics of Capsules and Biological Cells provides a comprehensive, rigorous, and current introduction to the fundamental concepts, mathematical formulation, alternative approaches, and predictions of this evolving field. In the first several chapters on boundary-element, boundary-integral, and immersed-boundary methods, the book covers the flow-induced deformation of idealized two-dimensional red blood cells in Stokes flow, capsules with spherical unstressed shapes based on direct and variational formulations, and cellular flow in domains with complex geometry. It also presents simulations of microscopic hemodynamics and hemorheology as well as results on the deformation of capsules and cells in dilute and dense suspensions. The book then describes a discrete membrane model where a surface network of viscoelastic links emulates the spectrin network of the cytoskeleton, before presenting a novel two-dimensional model of red and white blood cell motion. The final chapter discusses the numerical simulation of platelet motion near a wall representing injured tissue. This volume provides a roadmap to the current state of the art in computational cellular mechanics and biofluiddynamics. It also indicates areas for further work on mathematical formulation and numerical implementation and identifies physiological problems that need to be addressed in future research. MATLAB® code and other data are available at http://dehesa.freeshell.org/CC2

Top Download:

Best Books