computational statics and dynamics an introduction based on the finite element method

Download Book Computational Statics And Dynamics An Introduction Based On The Finite Element Method in PDF format. You can Read Online Computational Statics And Dynamics An Introduction Based On The Finite Element Method here in PDF, EPUB, Mobi or Docx formats.

Computational Statics And Dynamics

Author : Andreas Öchsner
ISBN : 9789811007330
Genre : Technology & Engineering
File Size : 51. 23 MB
Format : PDF, Docs
Download : 543
Read : 766

Download Now


This book introduces readers to modern computational mechanics based on the finite element method. It helps students succeed in mechanics courses by showing them how to apply the fundamental knowledge they gained in the first years of their engineering education to more advanced topics. In order to deepen readers’ understanding of the derived equations and theories, each chapter also includes supplementary problems. These problems start with fundamental knowledge questions on the theory presented in the chapter, followed by calculation problems. In total over 80 such calculation problems are provided, along with brief solutions for each. This book is especially designed to meet the needs of Australian students, reviewing the mathematics covered in their first two years at university. The 13-week course comprises three hours of lectures and two hours of tutorials per week.

Engineering Computation Of Structures The Finite Element Method

Author : Maria Augusta Neto
ISBN : 3319177095
Genre : Technology & Engineering
File Size : 49. 54 MB
Format : PDF
Download : 620
Read : 1226

Download Now


This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It uses straightforward examples to demonstrate a complete and detailed finite element procedure, emphasizing the differences between exact and numerical procedures.

Applied Computational Fluid Dynamics Techniques

Author : Rainald Löhner
ISBN : 0471498432
Genre : Mathematics
File Size : 33. 24 MB
Format : PDF
Download : 575
Read : 608

Download Now


Computational fluid dynamics (CFD) is concerned with the efficient numerical solution of the partial differential equations that describe fluid dynamics, and CFD techniques are commonly used in many areas of engineering where fluid behavior is a factor. This book covers the range of topics required for a thorough study and understanding of CFD.

The Finite Element Method

Author : Thomas J. R. Hughes
ISBN : 0486411818
Genre : Technology & Engineering
File Size : 77. 62 MB
Format : PDF, Docs
Download : 729
Read : 543

Download Now


This text is geared toward assisting engineering and physical science students in cultivating comprehensive skills in linear static and dynamic finite element methodology. Based on courses taught at Stanford University and the California Institute of Technology, it ranges from fundamental concepts to practical computer implementations. Additional sections touch upon the frontiers of research, making the book of potential interest to more experienced analysts and researchers working in the finite element field. In addition to its examination of numerous standard aspects of the finite element method, the volume includes many unique components, including a comprehensive presentation and analysis of algorithms of time-dependent phenomena, plus beam, plate, and shell theories derived directly from three-dimensional elasticity theory. It also contains a systematic treatment of "weak," or variational, formulations for diverse classes of initial/boundary-value problems. Directed toward students without in-depth mathematical training, the text incorporates introductory material on the mathematical theory of finite elements and many important mathematical results, making it an ideal primer for more advanced works on this subject.

The Scaled Boundary Finite Element Method

Author : John P. Wolf
ISBN : 0471486825
Genre : Technology & Engineering
File Size : 90. 83 MB
Format : PDF, Kindle
Download : 731
Read : 159

Download Now


A novel computational procedure called the scaled boundary finite-element method is described which combines the advantages of the finite-element and boundary-element methods : Of the finite-element method that no fundamental solution is required and thus expanding the scope of application, for instance to anisotropic material without an increase in complexity and that singular integrals are avoided and that symmetry of the results is automatically satisfied. Of the boundary-element method that the spatial dimension is reduced by one as only the boundary is discretized with surface finite elements, reducing the data preparation and computational efforts, that the boundary conditions at infinity are satisfied exactly and that no approximation other than that of the surface finite elements on the boundary is introduced. In addition, the scaled boundary finite-element method presents appealing features of its own : an analytical solution inside the domain is achieved, permitting for instance accurate stress intensity factors to be determined directly and no spatial discretization of certain free and fixed boundaries and interfaces between different materials is required. In addition, the scaled boundary finite-element method combines the advantages of the analytical and numerical approaches. In the directions parallel to the boundary, where the behaviour is, in general, smooth, the weighted-residual approximation of finite elements applies, leading to convergence in the finite-element sense. In the third (radial) direction, the procedure is analytical, permitting e.g. stress-intensity factors to be determined directly based on their definition or the boundary conditions at infinity to be satisfied exactly. In a nutshell, the scaled boundary finite-element method is a semi-analytical fundamental-solution-less boundary-element method based on finite elements. The best of both worlds is achieved in two ways: with respect to the analytical and numerical methods and with respect to the finite-element and boundary-element methods within the numerical procedures. The book serves two goals: Part I is an elementary text, without any prerequisites, a primer, but which using a simple model problem still covers all aspects of the method and Part II presents a detailed derivation of the general case of statics, elastodynamics and diffusion.

Introduction To Computational Plasticity

Author : Fionn Dunne
ISBN : 9780198568261
Genre : Mathematics
File Size : 28. 28 MB
Format : PDF, ePub, Mobi
Download : 894
Read : 721

Download Now


The book covers an introduction to the computational analysis of plasticity in engineering materials and structures. The general theory is presented which, wherever possible, is reduced to simple, one-dimensional forms to develop understanding and a good 'physical feel' for the theory. Implementations of the theory in to modern computer solution techniques are described and several examples given.

Computational Techniques Of Rotor Dynamics With The Finite Element Method

Author : Arne Vollan
ISBN : 9781439847701
Genre : Science
File Size : 39. 6 MB
Format : PDF, Mobi
Download : 693
Read : 1172

Download Now


For more than a century, we have had a firm grasp on rotor dynamics involving rigid bodies with regular shapes, such as cylinders and shafts. However, to achieve an equally solid understanding of the rotational behavior of flexible bodies—especially those with irregular shapes, such as propeller and turbine blades—we require more modern tools and methods. Computational Techniques of Rotor Dynamics with the Finite Element Method explores the application of practical finite element method (FEM)-based computational techniques and state-of-the-art engineering software. These are used to simulate behavior of rotational structures that enable the function of various types of machinery—from generators and wind turbines to airplane engines and propellers. The book’s first section focuses on the theoretical foundation of rotor dynamics, and the second concentrates on the engineering analysis of rotating structures. The authors explain techniques used in the modeling and computation of the forces involved in the rotational phenomenon. They then demonstrate how to interpret and apply the results to improve fidelity and performance. Coverage includes: Use of FEM to achieve the most accurate computational simulation of all gyroscopic forces occurring in rotational structures Details of highly efficient and accurate computational and numerical techniques for dynamic simulations Interpretation of computational results, which is instrumental to developing stable rotating machinery Practical application examples of rotational structures’ dynamic response to external and internal excitations An FEM case study that illustrates the computational complexities associated with modeling and computation of forces of rotor dynamics Assessment of propellers and turbines that are critical to the transportation and energy industries Useful to practicing engineers and graduate-level students alike, this self-contained volume also serves as an invaluable reference for researchers and instructors in this field. CRC Press Authors Speak Louis Komzsik introduces you to two books that share a common mathematical foundation, the finite element analysis technique. Watch the video.

Top Download:

Best Books