# computational statistics an introduction to r

**Download Book Computational Statistics An Introduction To R in PDF format. You can Read Online Computational Statistics An Introduction To R here in PDF, EPUB, Mobi or Docx formats.**

## Computational Statistics

**Author :**Günther Sawitzki

**ISBN :**1420086812

**Genre :**Mathematics

**File Size :**70. 28 MB

**Format :**PDF, Docs

**Download :**271

**Read :**839

Suitable for a compact course or self-study, Computational Statistics: An Introduction to R illustrates how to use the freely available R software package for data analysis, statistical programming, and graphics. Integrating R code and examples throughout, the text only requires basic knowledge of statistics and computing. This introduction covers one-sample analysis and distribution diagnostics, regression, two-sample problems and comparison of distributions, and multivariate analysis. It uses a range of examples to demonstrate how R can be employed to tackle statistical problems. In addition, the handy appendix includes a collection of R language elements and functions, serving as a quick reference and starting point to access the rich information that comes bundled with R. Accessible to a broad audience, this book explores key topics in data analysis, regression, statistical distributions, and multivariate statistics. Full of examples and with a color insert, it helps readers become familiar with R.

## Computational Statistics An Introduction To R

**Author :**CTI Reviews

**ISBN :**9781467207645

**Genre :**Education

**File Size :**27. 84 MB

**Format :**PDF, ePub, Docs

**Download :**711

**Read :**946

Facts101 is your complete guide to Computational Statistics, An Introduction to R. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.

## Beginning R

**Author :**Larry Pace

**ISBN :**9781484203736

**Genre :**Computers

**File Size :**48. 54 MB

**Format :**PDF, Mobi

**Download :**908

**Read :**690

Beginning R, Second Edition is a hands-on book showing how to use the R language, write and save R scripts, read in data files, and write custom statistical functions as well as use built in functions. This book shows the use of R in specific cases such as one-way ANOVA analysis, linear and logistic regression, data visualization, parallel processing, bootstrapping, and more. It takes a hands-on, example-based approach incorporating best practices with clear explanations of the statistics being done. It has been completely re-written since the first edition to make use of the latest packages and features in R version 3. R is a powerful open-source language and programming environment for statistics and has become the de facto standard for doing, teaching, and learning computational statistics. R is both an object-oriented language and a functional language that is easy to learn, easy to use, and completely free. A large community of dedicated R users and programmers provides an excellent source of R code, functions, and data sets, with a constantly evolving ecosystem of packages providing new functionality for data analysis. R has also become popular in commercial use at companies such as Microsoft, Google, and Oracle. Your investment in learning R is sure to pay off in the long term as R continues to grow into the go to language for data analysis and research. What You Will Learn: How to acquire and install R Hot to import and export data and scripts How to analyze data and generate graphics How to program in R to write custom functions Hot to use R for interactive statistical explorations How to conduct bootstrapping and other advanced techniques

## Statistical Computing With R

**Author :**Maria L. Rizzo

**ISBN :**9781584885450

**Genre :**Mathematics

**File Size :**53. 20 MB

**Format :**PDF, ePub

**Download :**129

**Read :**606

Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. One of the first books on these topics to feature R, Statistical Computing with R covers the traditional core material of computational statistics, with an emphasis on using the R language via an examples-based approach. Suitable for an introductory course in computational statistics or for self-study, it includes R code for all examples and R notes to help explain the R programming concepts. After an overview of computational statistics and an introduction to the R computing environment, the book reviews some basic concepts in probability and classical statistical inference. Each subsequent chapter explores a specific topic in computational statistics. These chapters cover the simulation of random variables from probability distributions, the visualization of multivariate data, Monte Carlo integration and variance reduction methods, Monte Carlo methods in inference, bootstrap and jackknife, permutation tests, Markov chain Monte Carlo (MCMC) methods, and density estimation. The final chapter presents a selection of examples that illustrate the application of numerical methods using R functions. Focusing on implementation rather than theory, this text serves as a balanced, accessible introduction to computational statistics and statistical computing.

## Foundations And Applications Of Statistics

**Author :**Randall J. Pruim

**ISBN :**9780821852330

**Genre :**Mathematics

**File Size :**82. 66 MB

**Format :**PDF, Kindle

**Download :**797

**Read :**1096

Foundations and Applications of Statistics simultaneously emphasizes both the foundational and the computational aspects of modern statistics. Engaging and accessible, this book is useful to undergraduate students with a wide range of backgrounds and career goals. The exposition immediately begins with statistics, presenting concepts and results from probability along the way. Hypothesis testing is introduced very early, and the motivation for several probability distributions comes from p-value computations. Pruim develops the students' practical statistical reasoning through explicit examples and through numerical and graphical summaries of data that allow intuitive inferences before introducing the formal machinery. The topics have been selected to reflect the current practice in statistics, where computation is an indispensible tool. In this vein, the statistical computing environment \mathsf{R} is used throughout the text and is integral to the exposition. Attention is paid to developing students' mathematical and computational skills as well as their statistical reasoning. Linear models, such as regression and ANOVA, are treated with explicit reference to the underlying linear algebra, which is motivated geometrically. Foundations and Applications of Statistics discusses both the mathematical theory underlying statistics and practical applications that make it a powerful tool across disciplines. The book contains ample material for a two-semester course in undergraduate probability and statistics. A one-semester course based on the book will cover hypothesis testing and confidence intervals for the most common situations.

## An Introduction To Statistical Computing

**Author :**Jochen Voss

**ISBN :**9781118728024

**Genre :**Mathematics

**File Size :**39. 87 MB

**Format :**PDF, Docs

**Download :**893

**Read :**901

A comprehensive introduction to sampling-based methods in statistical computing The use of computers in mathematics and statistics has opened up a wide range of techniques for studying otherwise intractable problems. Sampling-based simulation techniques are now an invaluable tool for exploring statistical models. This book gives a comprehensive introduction to the exciting area of sampling-based methods. An Introduction to Statistical Computing introduces the classical topics of random number generation and Monte Carlo methods. It also includes some advanced methods such as the reversible jump Markov chain Monte Carlo algorithm and modern methods such as approximate Bayesian computation and multilevel Monte Carlo techniques An Introduction to Statistical Computing: Fully covers the traditional topics of statistical computing. Discusses both practical aspects and the theoretical background. Includes a chapter about continuous-time models. Illustrates all methods using examples and exercises. Provides answers to the exercises (using the statistical computing environment R); the corresponding source code is available online. Includes an introduction to programming in R. This book is mostly self-contained; the only prerequisites are basic knowledge of probability up to the law of large numbers. Careful presentation and examples make this book accessible to a wide range of students and suitable for self-study or as the basis of a taught course

## Introductory Statistics With R

**Author :**Peter Dalgaard

**ISBN :**9780387790541

**Genre :**Mathematics

**File Size :**78. 55 MB

**Format :**PDF, Mobi

**Download :**435

**Read :**909

This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.