computer algebra in quantum field theory integration summation and special functions texts monographs in symbolic computation

Download Book Computer Algebra In Quantum Field Theory Integration Summation And Special Functions Texts Monographs In Symbolic Computation in PDF format. You can Read Online Computer Algebra In Quantum Field Theory Integration Summation And Special Functions Texts Monographs In Symbolic Computation here in PDF, EPUB, Mobi or Docx formats.

Computer Algebra In Quantum Field Theory

Author : Carsten Schneider
ISBN : 9783709116166
Genre : Science
File Size : 78. 44 MB
Format : PDF, Kindle
Download : 229
Read : 1123

Get This Book


The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including most recent developments. Besides that, the collection of articles also serves as an up-to-date handbook of available algorithms/software that are commonly used or might be useful in the fields of mathematics, physics or other sciences.

Computer Algebra And Polynomials

Author : Jaime Gutierrez
ISBN : 9783319150819
Genre : Computers
File Size : 31. 74 MB
Format : PDF, Docs
Download : 529
Read : 410

Get This Book


Algebra and number theory have always been counted among the most beautiful mathematical areas with deep proofs and elegant results. However, for a long time they were not considered that important in view of the lack of real-life applications. This has dramatically changed: nowadays we find applications of algebra and number theory frequently in our daily life. This book focuses on the theory and algorithms for polynomials over various coefficient domains such as a finite field or ring. The operations on polynomials in the focus are factorization, composition and decomposition, basis computation for modules, etc. Algorithms for such operations on polynomials have always been a central interest in computer algebra, as it combines formal (the variables) and algebraic or numeric (the coefficients) aspects. The papers presented were selected from the Workshop on Computer Algebra and Polynomials, which was held in Linz at the Johann Radon Institute for Computational and Applied Mathematics (RICAM) during November 25-29, 2013, at the occasion of the Special Semester on Applications of Algebra and Number Theory.

Advances In Computer Algebra

Author : Carsten Schneider
ISBN : 9783319732329
Genre : Mathematics
File Size : 59. 7 MB
Format : PDF, ePub, Docs
Download : 752
Read : 387

Get This Book


This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC’2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23–24, 2016. This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.

Handbook Of Enumerative Combinatorics

Author : Miklos Bona
ISBN : 9781482220865
Genre : Mathematics
File Size : 47. 53 MB
Format : PDF, ePub, Mobi
Download : 598
Read : 234

Get This Book


Presenting the state of the art, the Handbook of Enumerative Combinatorics brings together the work of today’s most prominent researchers. The contributors survey the methods of combinatorial enumeration along with the most frequent applications of these methods. This important new work is edited by Miklós Bóna of the University of Florida where he is a member of the Academy of Distinguished Teaching Scholars. He received his Ph.D. in mathematics at Massachusetts Institute of Technology in 1997. Miklós is the author of four books and more than 65 research articles, including the award-winning Combinatorics of Permutations. Miklós Bóna is an editor-in-chief for the Electronic Journal of Combinatorics and Series Editor of the Discrete Mathematics and Its Applications Series for CRC Press/Chapman and Hall. The first two chapters provide a comprehensive overview of the most frequently used methods in combinatorial enumeration, including algebraic, geometric, and analytic methods. These chapters survey generating functions, methods from linear algebra, partially ordered sets, polytopes, hyperplane arrangements, and matroids. Subsequent chapters illustrate applications of these methods for counting a wide array of objects. The contributors for this book represent an international spectrum of researchers with strong histories of results. The chapters are organized so readers advance from the more general ones, namely enumeration methods, towards the more specialized ones. Topics include coverage of asymptotic normality in enumeration, planar maps, graph enumeration, Young tableaux, unimodality, log-concavity, real zeros, asymptotic normality, trees, generalized Catalan paths, computerized enumeration schemes, enumeration of various graph classes, words, tilings, pattern avoidance, computer algebra, and parking functions. This book will be beneficial to a wide audience. It will appeal to experts on the topic interested in learning more about the finer points, readers interested in a systematic and organized treatment of the topic, and novices who are new to the field.

Philosophie Der Mathematik Und Naturwissenschaft

Author : Herrmann Weyl
ISBN : 9783486849905
Genre : Mathematics
File Size : 42. 45 MB
Format : PDF, ePub
Download : 731
Read : 1019

Get This Book


Hermann Weyls "Philosophie der Mathematik und Naturwissenschaft" erschien erstmals 1928 als Beitrag zu dem von A. Bäumler und M. Schröter herausgegebenen "Handbuch der Philosophie". Die amerikanische Ausgabe, auf der die deutsche Übersetzung von Gottlob Kirschmer beruht, erschien 1949 bei Princeton University Press. Das nunmehr bereits in der 8. Auflage vorliegende Werk ist längst auch in Deutschland zum Standardwerk geworden.

Fuchsian Differential Equations

Author : Masaaki Yoshida
ISBN : 9783663141150
Genre : Mathematics
File Size : 82. 86 MB
Format : PDF, ePub
Download : 420
Read : 789

Get This Book



Mathematik Und Technologie

Author : Christiane Rousseau
ISBN : 9783642300929
Genre : Mathematics
File Size : 59. 58 MB
Format : PDF, Mobi
Download : 656
Read : 479

Get This Book


Zusammen mit der Abstraktion ist die Mathematik das entscheidende Werkzeug für technologische Innovationen. Das Buch bietet eine Einführung in zahlreiche Anwendungen der Mathematik auf dem Gebiet der Technologie. Meist werden moderne Anwendungen dargestellt, die heute zum Alltag gehören. Die mathematischen Grundlagen für technologische Anwendungen sind dabei relativ elementar, was die Leistungsstärke der mathematischen Modellbildung und der mathematischen Hilfsmittel beweist. Mit zahlreichen originellen Übungen am Ende eines jeden Kapitels.

Funktionentheorie 2

Author : Reinhold Remmert
ISBN : 9783662073537
Genre : Mathematics
File Size : 65. 60 MB
Format : PDF
Download : 482
Read : 321

Get This Book


Aus den Besprechungen: "Der nunmehr vorliegende zweite Band der Funktionentheorie erfüllt voll die Erwartungen, die der erste Band geweckt hat. Wieder beeindrucken vor allem die hochinteressanten historischen Bemerkungen zu den einzelnen Themenkreisen, als besonderer Leckerbissen wird das Gutachten von Gauß über Riemanns Dissertation vorgestellt... Jedes einzelne Kapitel enthält ausführliche Literaturangaben. Ferner werden oft sehr aufschlußreiche Hinweise auf die Funktionentheorie mehrerer Veränderlicher gegeben. Die vielen Beispiele und Übungsaufgaben bilden eine wertvolle Ergänzung der brillant dargelegten Theorie. Der Rezensent bedauert, daß ihm nicht schon als Student ein derartig umfassendes, qualitativ hochstehendes Lehrbuch zur Verfügung stand." Monatshefte für Mathematik

Zahlentheorie

Author : Helmut Koch
ISBN : 9783322803122
Genre : Mathematics
File Size : 79. 44 MB
Format : PDF, ePub, Docs
Download : 555
Read : 1120

Get This Book


Hauptziel des Buches ist die Vermittlung des Grundbestandes der Algebraischen Zahlentheorie einschließlich der Theorie der normalen Erweiterungen bis hin zu einem Ausblick auf die Klassenkörpertheorie. Gleichberechtigt mit algebraischen Zahlen werden auch algebraische Funktionen behandelt. Dies geschieht einerseits um die Analogie zwischen Zahl- und Funktionenkörpern aufzuzeigen, die besonders deutlich im Falle eines endlichen Konstantenkörpers ist. Andererseits erhält man auf diese Weise eine Einführung in die Theorie der "höheren Kongruenzen" als eines wesentlichen Bestandteils der "Arithmetischen Geometrie". Obgleich das Buch hauptsächlich algebraischen Methoden gewidmet ist, findet man in der Einleitung auch einen kurzen Beweis des Primzahlsatzes nach Newman. In den Kapiteln 7 und 8 wird die Theorie der Heckeschen L-Reihen behandelt einschließlich der Verteilung der Primideale algebraischer Zahlkörper in Kegeln.

Dirichlet Forms And Analysis On Wiener Space

Author : Nicolas Bouleau
ISBN : 9783110858389
Genre : Mathematics
File Size : 80. 24 MB
Format : PDF, ePub, Mobi
Download : 331
Read : 547

Get This Book


The subject of this book is analysis on Wiener space by means of Dirichlet forms and Malliavin calculus. There are already several literature on this topic, but this book has some different viewpoints. First the authors review the theory of Dirichlet forms, but they observe only functional analytic, potential theoretical and algebraic properties. They do not mention the relation with Markov processes or stochastic calculus as discussed in usual books (e.g. Fukushima’s book). Even on analytic properties, instead of mentioning the Beuring-Deny formula, they discuss “carré du champ” operators introduced by Meyer and Bakry very carefully. Although they discuss when this “carré du champ” operator exists in general situation, the conditions they gave are rather hard to verify, and so they verify them in the case of Ornstein-Uhlenbeck operator in Wiener space later. (It should be noticed that one can easily show the existence of “carré du champ” operator in this case by using Shigekawa’s H-derivative.) In the part on Malliavin calculus, the authors mainly discuss the absolute continuity of the probability law of Wiener functionals. The Dirichlet form corresponds to the first derivative only, and so it is not easy to consider higher order derivatives in this framework. This is the reason why they discuss only the first step of Malliavin calculus. On the other hand, they succeeded to deal with some delicate problems (the absolute continuity of the probability law of the solution to stochastic differential equations with Lipschitz continuous coefficients, the domain of stochastic integrals (Itô-Ramer-Skorokhod integrals), etc.). This book focuses on the abstract structure of Dirichlet forms and Malliavin calculus rather than their applications. However, the authors give a lot of exercises and references and they may help the reader to study other topics which are not discussed in this book. Zentralblatt Math, Reviewer: S.Kusuoka (Hongo)

Top Download:

Best Books