# convergence foundations of topology

**Download Book Convergence Foundations Of Topology in PDF format. You can Read Online Convergence Foundations Of Topology here in PDF, EPUB, Mobi or Docx formats.**

## Convergence Foundations Of Topology

**Author :**Szymon Dolecki

**ISBN :**9789814571548

**Genre :**Mathematics

**File Size :**47. 41 MB

**Format :**PDF, ePub, Docs

**Download :**618

**Read :**1143

This textbook is an alternative to a classical introductory book in point-set topology. The approach, however, is radically different from the classical one. It is based on convergence rather than on open and closed sets. Convergence of filters is a natural generalization of the basic and well-known concept of convergence of sequences, so that convergence theory is more natural and intuitive to many, perhaps most, students than classical topology. On the other hand, the framework of convergence is easier, more powerful and far-reaching which highlights a need for a theory of convergence in various branches of analysis. Convergence theory for filters is gradually introduced and systematically developed. Topological spaces are presented as a special subclass of convergence spaces of particular interest, but a large part of the material usually developed in a topology textbook is treated in the larger realm of convergence spaces.

## Foundations Of Topology

**Author :**Gerhard Preuß

**ISBN :**9789401004893

**Genre :**Mathematics

**File Size :**86. 77 MB

**Format :**PDF, Mobi

**Download :**623

**Read :**582

A new foundation of Topology, summarized under the name Convenient Topology, is considered such that several deficiencies of topological and uniform spaces are remedied. This does not mean that these spaces are superfluous. It means exactly that a better framework for handling problems of a topological nature is used. In this setting semiuniform convergence spaces play an essential role. They include not only convergence structures such as topological structures and limit space structures, but also uniform convergence structures such as uniform structures and uniform limit space structures, and they are suitable for studying continuity, Cauchy continuity and uniform continuity as well as convergence structures in function spaces, e.g. simple convergence, continuous convergence and uniform convergence. Various interesting results are presented which cannot be obtained by using topological or uniform spaces in the usual context. The text is self-contained with the exception of the last chapter, where the intuitive concept of nearness is incorporated in Convenient Topology (there exist already excellent expositions on nearness spaces).

## Beyond Topology

**Author :**Frdric Mynard

**ISBN :**9780821842799

**Genre :**Mathematics

**File Size :**20. 37 MB

**Format :**PDF, Kindle

**Download :**172

**Read :**157

The purpose of this collection is to guide the non-specialist through the basic theory of various generalizations of topology, starting with clear motivations for their introduction. Structures considered include closure spaces, convergence spaces, proximity spaces, quasi-uniform spaces, merotopic spaces, nearness and filter spaces, semi-uniform convergence spaces, and approach spaces. Each chapter is self-contained and accessible to the graduate student, and focuses on motivations to introduce the generalization of topologies considered, presenting examples where desirable properties are not present in the realm of topologies and the problem is remedied in the more general context. Then, enough material will be covered to prepare the reader for more advanced papers on the topic. While category theory is not the focus of the book, it is a convenient language to study these structures and, while kept as a tool rather than an object of study, will be used throughout the book. For this reason, the book contains an introductory chapter on categorical topology.

## Mathematics Of Fuzzy Sets

**Author :**Ulrich Höhle

**ISBN :**9781461550792

**Genre :**Mathematics

**File Size :**90. 85 MB

**Format :**PDF, ePub, Mobi

**Download :**346

**Read :**959

Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory is a major attempt to provide much-needed coherence for the mathematics of fuzzy sets. Much of this book is new material required to standardize this mathematics, making this volume a reference tool with broad appeal as well as a platform for future research. Fourteen chapters are organized into three parts: mathematical logic and foundations (Chapters 1-2), general topology (Chapters 3-10), and measure and probability theory (Chapters 11-14). Chapter 1 deals with non-classical logics and their syntactic and semantic foundations. Chapter 2 details the lattice-theoretic foundations of image and preimage powerset operators. Chapters 3 and 4 lay down the axiomatic and categorical foundations of general topology using lattice-valued mappings as a fundamental tool. Chapter 3 focuses on the fixed-basis case, including a convergence theory demonstrating the utility of the underlying axioms. Chapter 4 focuses on the more general variable-basis case, providing a categorical unification of locales, fixed-basis topological spaces, and variable-basis compactifications. Chapter 5 relates lattice-valued topologies to probabilistic topological spaces and fuzzy neighborhood spaces. Chapter 6 investigates the important role of separation axioms in lattice-valued topology from the perspective of space embedding and mapping extension problems, while Chapter 7 examines separation axioms from the perspective of Stone-Cech-compactification and Stone-representation theorems. Chapters 8 and 9 introduce the most important concepts and properties of uniformities, including the covering and entourage approaches and the basic theory of precompact or complete [0,1]-valued uniform spaces. Chapter 10 sets out the algebraic, topological, and uniform structures of the fundamentally important fuzzy real line and fuzzy unit interval. Chapter 11 lays the foundations of generalized measure theory and representation by Markov kernels. Chapter 12 develops the important theory of conditioning operators with applications to measure-free conditioning. Chapter 13 presents elements of pseudo-analysis with applications to the Hamilton–Jacobi equation and optimization problems. Chapter 14 surveys briefly the fundamentals of fuzzy random variables which are [0,1]-valued interpretations of random sets.

## Elementary Topology

**Author :**Michael C. Gemignani

**ISBN :**0486665224

**Genre :**Mathematics

**File Size :**24. 66 MB

**Format :**PDF, ePub

**Download :**312

**Read :**718

Topology is one of the most rapidly expanding areas of mathematical thought: while its roots are in geometry and analysis, topology now serves as a powerful tool in almost every sphere of mathematical study. This book is intended as a first text in topology, accessible to readers with at least three semesters of a calculus and analytic geometry sequence. In addition to superb coverage of the fundamentals of metric spaces, topologies, convergence, compactness, connectedness, homotopy theory, and other essentials, Elementary Topology gives added perspective as the author demonstrates how abstract topological notions developed from classical mathematics. For this second edition, numerous exercises have been added as well as a section dealing with paracompactness and complete regularity. The Appendix on infinite products has been extended to include the general Tychonoff theorem; a proof of the Tychonoff theorem which does not depend on the theory of convergence has also been added in Chapter 7.

## Foundations Of Topology

**Author :**C. Wayne Patty

**ISBN :**9781449668655

**Genre :**Mathematics

**File Size :**21. 2 MB

**Format :**PDF, Kindle

**Download :**526

**Read :**793

Topology is a branch of pure mathematics that deals with the abstract relationships found in geometry and analysis. Written with the mature student in mind, Foundations of Topology, Second Edition, provides a user-friendly, clear, and concise introduction to this fascinating area of mathematics. The author introduces topics that are well motivated with thorough proofs that make them easy to follow. Historical comments are dispersed throughout the text, and exercises, varying in degree of difficulty, are found at the end of each chapter. Foundations of Topology is an excellent text for teaching students how to develop the skill to write clear and precise proofs.

## Handbook Of Analysis And Its Foundations

**Author :**Eric Schechter

**ISBN :**9780080532998

**Genre :**Mathematics

**File Size :**71. 27 MB

**Format :**PDF, Kindle

**Download :**584

**Read :**1178

Handbook of Analysis and Its Foundations is a self-contained and unified handbook on mathematical analysis and its foundations. Intended as a self-study guide for advanced undergraduates and beginning graduatestudents in mathematics and a reference for more advanced mathematicians, this highly readable book provides broader coverage than competing texts in the area. Handbook of Analysis and Its Foundations provides an introduction to a wide range of topics, including: algebra; topology; normed spaces; integration theory; topological vector spaces; and differential equations. The author effectively demonstrates the relationships between these topics and includes a few chapters on set theory and logic to explain the lack of examples for classical pathological objects whose existence proofs are not constructive. More complete than any other book on the subject, students will find this to be an invaluable handbook. Covers some hard-to-find results including: Bessagas and Meyers converses of the Contraction Fixed Point Theorem Redefinition of subnets by Aarnes and Andenaes Ghermans characterization of topological convergences Neumanns nonlinear Closed Graph Theorem van Maarens geometry-free version of Sperners Lemma Includes a few advanced topics in functional analysis Features all areas of the foundations of analysis except geometry Combines material usually found in many different sources, making this unified treatment more convenient for the user Has its own webpage: http://math.vanderbilt.edu/