curves and surfaces graduate studies in mathematics

Download Book Curves And Surfaces Graduate Studies In Mathematics in PDF format. You can Read Online Curves And Surfaces Graduate Studies In Mathematics here in PDF, EPUB, Mobi or Docx formats.

Curves And Surfaces

Author : Sebastián Montiel
ISBN : 9780821847633
Genre : Mathematics
File Size : 85. 53 MB
Format : PDF
Download : 537
Read : 351

Get This Book

This introductory textbook puts forth a clear and focused point of view on the differential geometry of curves and surfaces. Following the modern point of view on differential geometry, the book emphasizes the global aspects of the subject. The excellent collection of examples and exercises (with hints) will help students in learning the material. Advanced undergraduates and graduate students will find this a nice entry point to differential geometry. In order to study the global properties of curves and surfaces, it is necessary to have more sophisticated tools than are usually found in textbooks on the topic. In particular, students must have a firm grasp on certain topological theories. Indeed, this monograph treats the Gauss-Bonnet theorem and discusses the Euler characteristic. The authors also cover Alexandrov's theorem on embedded compact surfaces in $\mathbb{R}^3$ with constant mean curvature. The last chapter addresses the global geometry of curves, including periodic space curves and the four-vertices theorem for plane curves that are not necessarily convex. Besides being an introduction to the lively subject of curves and surfaces, this book can also be used as an entry to a wider study of differential geometry. It is suitable as the text for a first-year graduate course or an advanced undergraduate course.

Differential Geometry Of Curves And Surfaces

Author : Kristopher Tapp
ISBN : 9783319397993
Genre : Mathematics
File Size : 32. 30 MB
Format : PDF, ePub, Docs
Download : 431
Read : 1259

Get This Book

This is a textbook on differential geometry well-suited to a variety of courses on this topic. For readers seeking an elementary text, the prerequisites are minimal and include plenty of examples and intermediate steps within proofs, while providing an invitation to more excursive applications and advanced topics. For readers bound for graduate school in math or physics, this is a clear, concise, rigorous development of the topic including the deep global theorems. For the benefit of all readers, the author employs various techniques to render the difficult abstract ideas herein more understandable and engaging. Over 300 color illustrations bring the mathematics to life, instantly clarifying concepts in ways that grayscale could not. Green-boxed definitions and purple-boxed theorems help to visually organize the mathematical content. Color is even used within the text to highlight logical relationships. Applications abound! The study of conformal and equiareal functions is grounded in its application to cartography. Evolutes, involutes and cycloids are introduced through Christiaan Huygens' fascinating story: in attempting to solve the famous longitude problem with a mathematically-improved pendulum clock, he invented mathematics that would later be applied to optics and gears. Clairaut’s Theorem is presented as a conservation law for angular momentum. Green’s Theorem makes possible a drafting tool called a planimeter. Foucault’s Pendulum helps one visualize a parallel vector field along a latitude of the earth. Even better, a south-pointing chariot helps one visualize a parallel vector field along any curve in any surface. In truth, the most profound application of differential geometry is to modern physics, which is beyond the scope of this book. The GPS in any car wouldn’t work without general relativity, formalized through the language of differential geometry. Throughout this book, applications, metaphors and visualizations are tools that motivate and clarify the rigorous mathematical content, but never replace it.

Differential Geometry Of Curves And Surfaces

Author : Manfredo P. do Carmo
ISBN : 9780486806990
Genre : Mathematics
File Size : 37. 64 MB
Format : PDF, ePub, Mobi
Download : 916
Read : 446

Get This Book

One of the most widely used texts in its field, this volume introduces the differential geometry of curves and surfaces in both local and global aspects. The presentation departs from the traditional approach with its more extensive use of elementary linear algebra and its emphasis on basic geometrical facts rather than machinery or random details. Many examples and exercises enhance the clear, well-written exposition, along with hints and answers to some of the problems. The treatment begins with a chapter on curves, followed by explorations of regular surfaces, the geometry of the Gauss map, the intrinsic geometry of surfaces, and global differential geometry. Suitable for advanced undergraduates and graduate students of mathematics, this text's prerequisites include an undergraduate course in linear algebra and some familiarity with the calculus of several variables. For this second edition, the author has corrected, revised, and updated the entire volume.

Differentialgeometrie Von Kurven Und Fl Chen

Author : Manfredo P. do Carmo
ISBN : 9783322850720
Genre : Technology & Engineering
File Size : 43. 12 MB
Format : PDF, Docs
Download : 829
Read : 176

Get This Book

Inhalt: Kurven - Reguläre Flächen - Die Geometrie der Gauß-Abbildung - Die innere Geometrie von Flächen - Anhang


Author : Wolfgang Kühnel
ISBN : 9783658006150
Genre : Mathematics
File Size : 51. 25 MB
Format : PDF, ePub, Docs
Download : 202
Read : 859

Get This Book

Dieses Buch ist eine Einführung in die Differentialgeometrie und ein passender Begleiter zum Differentialgeometrie-Modul (ein- und zweisemestrig). Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird. Bei der Neuauflage wurden einige zusätzliche Lösungen zu den Übungsaufgaben ergänzt.

Introduction To Geometry And Topology

Author : Werner Ballmann
ISBN : 9783034809832
Genre : Mathematics
File Size : 46. 36 MB
Format : PDF, ePub
Download : 545
Read : 488

Get This Book

This book provides an introduction to topology, differential topology, and differential geometry. It is based on manuscripts refined through use in a variety of lecture courses. The first chapter covers elementary results and concepts from point-set topology. An exception is the Jordan Curve Theorem, which is proved for polygonal paths and is intended to give students a first glimpse into the nature of deeper topological problems. The second chapter of the book introduces manifolds and Lie groups, and examines a wide assortment of examples. Further discussion explores tangent bundles, vector bundles, differentials, vector fields, and Lie brackets of vector fields. This discussion is deepened and expanded in the third chapter, which introduces the de Rham cohomology and the oriented integral and gives proofs of the Brouwer Fixed-Point Theorem, the Jordan-Brouwer Separation Theorem, and Stokes's integral formula. The fourth and final chapter is devoted to the fundamentals of differential geometry and traces the development of ideas from curves to submanifolds of Euclidean spaces. Along the way, the book discusses connections and curvature--the central concepts of differential geometry. The discussion culminates with the Gauß equations and the version of Gauß's theorema egregium for submanifolds of arbitrary dimension and codimension. This book is primarily aimed at advanced undergraduates in mathematics and physics and is intended as the template for a one- or two-semester bachelor's course.

Topology Of Algebraic Curves

Author : Alex Degtyarev
ISBN : 9783110258424
Genre : Mathematics
File Size : 87. 73 MB
Format : PDF, ePub, Docs
Download : 190
Read : 306

Get This Book

The book summarizes the state and new results on the topology of trigonal curves in geometrically ruled surfaces. Emphasis is placed upon various applications of the theory to related areas, most notably singular plane curves of small degree, elliptic surfaces, and Lefschetz fibrations (both complex and real), and Hurwitz equivalence of braid monodromy factorizations. The monograph conveys recent knowledge about related objects and is of interest to researchers and graduate students in the fields of topology and of complex and real algebraic varieties.


Author : Ilka Agricola
ISBN : 9783834896728
Genre : Mathematics
File Size : 22. 35 MB
Format : PDF, ePub
Download : 672
Read : 436

Get This Book

Dieses Lehrbuch eignet sich als Fortsetzungskurs in Analysis nach den Grundvorlesungen im ersten Studienjahr. Die Vektoranalysis ist ein klassisches Teilgebiet der Mathematik mit vielfältigen Anwendungen, zum Beispiel in der Physik. Das Buch führt die Studierenden in die Welt der Differentialformen und Analysis auf Untermannigfaltigkeiten des Rn ein. Teile des Buches können auch sehr gut für Vorlesungen in Differentialgeometrie oder Mathematischer Physik verwendet werden. Der Text enthält viele ausführliche Beispiele mit vollständigem Lösungsweg, die zur Übung hilfreich sind. Zahlreiche Abbildungen veranschaulichen den Text. Am Ende jedes Kapitels befinden sich weitere Übungsaufgaben. In der ersten Auflage erschien das Buch unter dem Titel "Globale Analysis". Der Text wurde an vielen Stellen überarbeitet. Fast alle Bilder wurden neu erstellt. Inhaltliche Ergänzungen wurden u. a. in der Differentialgeometrie sowie der Elektrodynamik vorgenommen.

Kurven Und Fl Chen Im Computer Aided Geometric Design

Author : Gerald Farin
ISBN : 9783663106029
Genre : Technology & Engineering
File Size : 33. 45 MB
Format : PDF
Download : 932
Read : 981

Get This Book

Computer Aided Geometric Design (CAGD) stellt die mathematischen Grundlagen für das in der Technik weitverbreitete CAD bereit. Vorlesungen zu diesem Themenbereich gehören heute an allen technisch orientierten Universitäten und Fachhochschulen zum Standard-Angebot. Das Buch liefert eine an der Praxis orientierte, dabei aber mathematisch exakte Einführung und führt den Leser bis an neueste Entwicklungen des Gebietes heran. Aus Besprechungen der amerikanischen Auflage: "Altogether, this book gives a solid introduction to CAGD methods, points out their advantages and disadvantages, can function as a reference book for programmers in CAGD, and is a perfect textbook."

Plane Algebraic Curves

Author : C. Orzech
ISBN : 0824711599
Genre : Mathematics
File Size : 70. 30 MB
Format : PDF, Mobi
Download : 667
Read : 523

Get This Book

Plane Algebraic Curves is a classroom-tested textbook for advanced undergraduate and beginning graduate students in mathematics. The book introduces the contemporary notions of algebraic varieties, morphisms of varieties, and adeles to the classical subject of plane curves over algebraically closed fields. By restricting the rigorous development of these notions to a traditional context the book makes its subject accessible without extensive algebraic prerequisites. Once the reader's intuition for plane curves has evolved, there is a discussion of how these objects can be generalized to higher dimensional settings. These features, as well as a proof of the Riemann-Roch Theorem based on a combination of geometric and algebraic considerations, make the book a good foundation for more specialized study in algebraic geometry, commutative algebra, and algebraic function fields. Plane Algebraic Curves is suitable for readers with a variety of backgrounds and interests. The book begins with a chapter outlining prerequisites, and contains informal discussions giving an overview of its material and relating it to non-algebraic topics which would be familiar to the general reader. There is an explanation of why the algebraic genus of a hyperelliptic curve agrees with its geometric genus as a compact Riemann surface, as well as a thorough description of how the classically important elliptic curves can be described in various normal forms. The book concludes with a bibliography which students can incorporate into their further studies. Book jacket.

Top Download:

Best Books