customer segmentation and clustering using sas enterprise miner second edition

Download Book Customer Segmentation And Clustering Using Sas Enterprise Miner Second Edition in PDF format. You can Read Online Customer Segmentation And Clustering Using Sas Enterprise Miner Second Edition here in PDF, EPUB, Mobi or Docx formats.

Customer Segmentation And Clustering Using Sas Enterprise Miner Third Edition

Author : Randall S. Collica
ISBN : 9781629605272
Genre : Computers
File Size : 89. 37 MB
Format : PDF, ePub, Docs
Download : 507
Read : 275

Download Now


Understanding your customers is the key to your company’s success! Segmentation is one of the first and most basic machine learning methods. It can be used by companies to understand their customers better, boost relevance of marketing messaging, and increase efficacy of predictive models. In Customer Segmentation and Clustering Using SAS Enterprise Miner, Third Edition, Randy Collica explains, in step-by-step fashion, the most commonly available techniques for segmentation using the powerful data mining software SAS Enterprise Miner. A working guide that uses real-world data, this new edition will show you how to segment customers more intelligently and achieve the one-to-one customer relationship that your business needs. Step-by-step examples and exercises, using a number of machine learning and data mining techniques, clearly illustrate the concepts of segmentation and clustering in the context of customer relationship management. The book includes four parts, each of which increases in complexity. Part 1 reviews the basics of segmentation and clustering at an introductory level, providing examples from a variety of industries. Part 2 offers an in-depth treatment of segmentation with practical topics, such as when and how to update your models. Part 3 goes beyond traditional segmentation practices to introduce recommended strategies for clustering product affinities, handling missing data, and incorporating textual records into your predictive model with SAS Text Miner. Finally, part 4 takes segmentation to a new level with advanced techniques, such as clustering of product associations, developing segmentation-scoring models from customer survey data, combining segmentations using ensemble segmentation, and segmentation of customer transactions. New to the third edition is a chapter that focuses on predictive models within microsegments and combined segments, and a new parallel process technique is introduced using SAS Factory Miner. In addition, all examples have been updated to the latest version of SAS Enterprise Miner.

Customer Segmentation And Clustering Using Sas Enterprise Miner Second Edition

Author : Randy Collica
ISBN : 9781612900926
Genre : Mathematics
File Size : 35. 12 MB
Format : PDF, Docs
Download : 309
Read : 414

Download Now


In Customer Segmentation and Clustering Using SAS Enterprise Miner, Second Edition, Randy Collica employs SAS Enterprise Miner and the most commonly available techniques for customer relationship management (CRM). You will learn how to segment customers more intelligently and to achieve, or at least get closer to, the one-to-one customer relationship that today's businesses want. Step-by-step examples and exercises clearly illustrate the concepts of segmentation and clustering in the context of CRM. The book is divided into four parts. Part 1 reviews the basics of segmentation and clustering at an introductory level, providing examples from a variety of industries. Part 2 offers an in-depth treatment of segmentation with practical topics such as when and how to update your models and clustering with many attributes. Part 3 goes beyond traditional segmentation practices to introduce recommended strategies for clustering product affinities, handling missing data, and incorporating textual records into your predictive model with SAS Text Miner software. Part 4 takes segmentation to a new level with advanced techniques such as clustering of product associations, developing segmentation scoring models from customer survey data, combining segmentations using ensemble segmentation, and segmentation of customer transactions. Updates to the second edition include four new chapters in Part 4, Chapters 13-16, that introduce new and advanced analytic techniques that can be valuable in many customer segmentation applications. In addition, Chapter 9 has a new section on using the Imputation node in SAS Enterprise Miner to accomplish missing data imputation, compared to PROC MI used in earlier sections of Chapter 9. Also included are business insights and motivations for selection settings and analytical decisions on many of the examples included in this second edition. This straightforward guide will appeal to anyone who seeks to better understand customers or prospective customers. Additionally, professors and students will find the book well suited for a business data mining analytics course in an MBA program or related course of study. You should understand basic statistics, but no prior knowledge of data mining or SAS Enterprise Miner is required. This book is part of the SAS Press program.

Customer Segmentation And Clustering Using Sas Enterprise Miner Third Edition

Author : Randall S. Collica
ISBN : 9781629605296
Genre : Computers
File Size : 25. 95 MB
Format : PDF
Download : 618
Read : 857

Download Now


Understanding your customers is the key to your company’s success! Segmentation is one of the first and most basic machine learning methods. It can be used by companies to understand their customers better, boost relevance of marketing messaging, and increase efficacy of predictive models. In Customer Segmentation and Clustering Using SAS Enterprise Miner, Third Edition, Randy Collica explains, in step-by-step fashion, the most commonly available techniques for segmentation using the powerful data mining software SAS Enterprise Miner. A working guide that uses real-world data, this new edition will show you how to segment customers more intelligently and achieve the one-to-one customer relationship that your business needs. Step-by-step examples and exercises, using a number of machine learning and data mining techniques, clearly illustrate the concepts of segmentation and clustering in the context of customer relationship management. The book includes four parts, each of which increases in complexity. Part 1 reviews the basics of segmentation and clustering at an introductory level, providing examples from a variety of industries. Part 2 offers an in-depth treatment of segmentation with practical topics, such as when and how to update your models. Part 3 goes beyond traditional segmentation practices to introduce recommended strategies for clustering product affinities, handling missing data, and incorporating textual records into your predictive model with SAS Text Miner. Finally, part 4 takes segmentation to a new level with advanced techniques, such as clustering of product associations, developing segmentation-scoring models from customer survey data, combining segmentations using ensemble segmentation, and segmentation of customer transactions. New to the third edition is a chapter that focuses on predictive models within microsegments and combined segments, and a new parallel process technique is introduced using SAS Factory Miner. In addition, all examples have been updated to the latest version of SAS Enterprise Miner.

Segmentation And Lifetime Value Models Using Sas

Author : Edward C. Malthouse
ISBN : 9781612907062
Genre : Mathematics
File Size : 26. 88 MB
Format : PDF, Mobi
Download : 717
Read : 855

Download Now


Help your organization determine the value of its customer relationships with Segmentation and Lifetime Value Models Using SAS. This book contains a wealth of information that will help you perform analyses to identify your customers and make informed marketing investments. It answers core questions on customer relationship management (CRM), provides an overall framework for thinking about CRM, and offers real-world examples across a variety of industries. Edward C. Malthouse introduces you to a number of useful models, ranging from simple to more complicated examples, and discusses their applications. You'll learn about segmentation models for identifying groups of customers and about lifetime value models for estimating the future value of the segments. You'll learn how to prepare data and estimate models using Base SAS, SAS/STAT, SAS/IML, and SQL. Marketing analysts, CRM analysts, database managers, and anyone looking to address the challenges of allocating marketing resources to different customer groups will benefit from the concepts and exercises in this book. Analysts will learn how to approach unique business problems. Managers will gain a sense of what's possible and what to ask of their analytics departments. This book is part of the SAS Press program.

Predictive Modeling With Sas Enterprise Miner

Author : Kattamuri S. Sarma
ISBN : 9781635260380
Genre : Computers
File Size : 77. 66 MB
Format : PDF
Download : 774
Read : 1018

Download Now


A step-by-step guide to predictive modeling! Kattamuri Sarma's Predictive Modeling with SAS Enterprise Miner: Practical Solutions for Business Applications, Third Edition, will show you how to develop and test predictive models quickly using SAS Enterprise Miner. Using realistic data, the book explains complex methods in a simple and practical way to readers from different backgrounds and industries. Incorporating the latest version of Enterprise Miner, this third edition also expands the section on time series. Written for business analysts, data scientists, statisticians, students, predictive modelers, and data miners, this comprehensive text provides examples that will strengthen your understanding of the essential concepts and methods of predictive modeling. Topics covered include logistic regression, regression, decision trees, neural networks, variable clustering, observation clustering, data imputation, binning, data exploration, variable selection, variable transformation, and much more, including analysis of textual data. Develop predictive models quickly, learn how to test numerous models and compare the results, gain an in-depth understanding of predictive models and multivariate methods, and discover how to do in-depth analysis. Do it all with Predictive Modeling with SAS Enterprise Miner!

Customer Segmentation And Clustering Using Sas Enterprise Miner

Author : Randall S. Collica
ISBN : 1629601063
Genre : Computers
File Size : 52. 50 MB
Format : PDF, Kindle
Download : 539
Read : 1212

Download Now


Understanding your customers is the key to your company's success! Segmentation is one of the first and most basic machine learning methods. It can be used by companies to understand their customers better, boost relevance of marketing messaging, and increase efficacy of predictive models. In Customer Segmentation and Clustering Using SAS Enterprise Miner, Third Edition, Randy Collica explains, in step-by-step fashion, the most commonly available techniques for segmentation using the powerful data mining software SAS Enterprise Miner. A working guide that uses real-world data, this new edition will show you how to segment customers more intelligently and achieve the one-to-one customer relationship that your business needs. Step-by-step examples and exercises, using a number of machine learning and data mining techniques, clearly illustrate the concepts of segmentation and clustering in the context of customer relationship management. The book includes four parts, each of which increases in complexity. Part 1 reviews the basics of segmentation and clustering at an introductory level, providing examples from a variety of industries. Part 2 offers an in-depth treatment of segmentation with practical topics, such as when and how to update your models. Part 3 goes beyond traditional segmentation practices to introduce recommended strategies for clustering product affinities, handling missing data, and incorporating textual records into your predictive model with SAS Text Miner. Finally, part 4 takes segmentation to a new level with advanced techniques, such as clustering of product associations, developing segmentation-scoring models from customer survey data, combining segmentations using ensemble segmentation, and segmentation of customer transactions. New to the third edition is a chapter that focuses on predictive models within microsegments and combined segments, and a new parallel process technique is introduced using SAS Factory Miner. In addition, all examples have been updated to the latest version of SAS Enterprise Miner.

Data Mining Techniques In Crm

Author : Konstantinos K. Tsiptsis
ISBN : 9781119965459
Genre : Computers
File Size : 41. 2 MB
Format : PDF, Kindle
Download : 425
Read : 661

Download Now


This is an applied handbook for the application of data mining techniques in the CRM framework. It combines a technical and a business perspective to cover the needs of business users who are looking for a practical guide on data mining. It focuses on Customer Segmentation and presents guidelines for the development of actionable segmentation schemes. By using non-technical language it guides readers through all the phases of the data mining process.

Text Mining And Analysis

Author : Dr. Goutam Chakraborty
ISBN : 9781612907871
Genre : Mathematics
File Size : 44. 33 MB
Format : PDF, Kindle
Download : 133
Read : 410

Download Now


Big data: It's unstructured, it's coming at you fast, and there's lots of it. In fact, the majority of big data is text-oriented, thanks to the proliferation of online sources such as blogs, emails, and social media. However, having big data means little if you can't leverage it with analytics. Now you can explore the large volumes of unstructured text data that your organization has collected with Text Mining and Analysis: Practical Methods, Examples, and Case Studies Using SAS. This hands-on guide to text analytics using SAS provides detailed, step-by-step instructions and explanations on how to mine your text data for valuable insight. Through its comprehensive approach, you'll learn not just how to analyze your data, but how to collect, cleanse, organize, categorize, explore, and interpret it as well. Text Mining and Analysis also features an extensive set of case studies, so you can see examples of how the applications work with real-world data from a variety of industries. Text analytics enables you to gain insights about your customers' behaviors and sentiments. Leverage your organization's text data, and use those insights for making better business decisions with Text Mining and Analysis. This book is part of the SAS Press program.

Cody S Data Cleaning Techniques Using Sas Second Edition

Author : Ron Cody
ISBN : 159994832X
Genre : Computers
File Size : 82. 65 MB
Format : PDF, ePub, Mobi
Download : 847
Read : 786

Download Now


Thoroughly updated for SAS®9, this second edition addresses tasks that nearly every SAS programmer needs to do¿that is, make sure that data errors are located and corrected. This book develops and demonstrates data cleaning programs and macros that you can use as written or modify for your own special data cleaning needs.

Data Mining And Predictive Analytics

Author : Daniel T. Larose
ISBN : 9781118868706
Genre : Computers
File Size : 53. 84 MB
Format : PDF, ePub, Mobi
Download : 164
Read : 293

Download Now


Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics, Second Edition: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant.com, with exclusive password-protected instructor content Data Mining and Predictive Analytics, Second Edition will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.

Top Download:

Best Books