data mining applications with r

Download Book Data Mining Applications With R in PDF format. You can Read Online Data Mining Applications With R here in PDF, EPUB, Mobi or Docx formats.

Data Mining Applications With R

Author : Yanchang Zhao
ISBN : 9780124115200
Genre : Computers
File Size : 67. 48 MB
Format : PDF, Kindle
Download : 695
Read : 289

Get This Book


Data Mining Applications with R is a great resource for researchers and professionals to understand the wide use of R, a free software environment for statistical computing and graphics, in solving different problems in industry. R is widely used in leveraging data mining techniques across many different industries, including government, finance, insurance, medicine, scientific research and more. This book presents 15 different real-world case studies illustrating various techniques in rapidly growing areas. It is an ideal companion for data mining researchers in academia and industry looking for ways to turn this versatile software into a powerful analytic tool. R code, Data and color figures for the book are provided at the RDataMining.com website. Helps data miners to learn to use R in their specific area of work and see how R can apply in different industries Presents various case studies in real-world applications, which will help readers to apply the techniques in their work Provides code examples and sample data for readers to easily learn the techniques by running the code by themselves

Classification Clustering And Data Mining Applications

Author : David Banks
ISBN : 9783642171031
Genre : Language Arts & Disciplines
File Size : 39. 2 MB
Format : PDF, ePub, Mobi
Download : 427
Read : 892

Get This Book


This volume describes new methods with special emphasis on classification and cluster analysis. These methods are applied to problems in information retrieval, phylogeny, medical diagnosis, microarrays, and other active research areas.

R And Data Mining

Author : Yanchang Zhao
ISBN : 9780123972712
Genre : Mathematics
File Size : 50. 76 MB
Format : PDF
Download : 919
Read : 1056

Get This Book


R and Data Mining introduces researchers, post-graduate students, and analysts to data mining using R, a free software environment for statistical computing and graphics. The book provides practical methods for using R in applications from academia to industry to extract knowledge from vast amounts of data. Readers will find this book a valuable guide to the use of R in tasks such as classification and prediction, clustering, outlier detection, association rules, sequence analysis, text mining, social network analysis, sentiment analysis, and more. Data mining techniques are growing in popularity in a broad range of areas, from banking to insurance, retail, telecom, medicine, research, and government. This book focuses on the modeling phase of the data mining process, also addressing data exploration and model evaluation. With three in-depth case studies, a quick reference guide, bibliography, and links to a wealth of online resources, R and Data Mining is a valuable, practical guide to a powerful method of analysis. Presents an introduction into using R for data mining applications, covering most popular data mining techniques Provides code examples and data so that readers can easily learn the techniques Features case studies in real-world applications to help readers apply the techniques in their work

Data Mining For Business Analytics

Author : Galit Shmueli
ISBN : 9781118879337
Genre : Mathematics
File Size : 26. 57 MB
Format : PDF, ePub, Mobi
Download : 792
Read : 266

Get This Book


Data Mining for Business Analytics: Concepts, Techniques, and Applications in R presents an applied approach to data mining concepts and methods, using R software for illustration Readers will learn how to implement a variety of popular data mining algorithms in R (a free and open-source software) to tackle business problems and opportunities. This is the fifth version of this successful text, and the first using R. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: • Two new co-authors, Inbal Yahav and Casey Lichtendahl, who bring both expertise teaching business analytics courses using R, and data mining consulting experience in business and government • Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students • More than a dozen case studies demonstrating applications for the data mining techniques described • End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented • A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions www.dataminingbook.com Data Mining for Business Analytics: Concepts, Techniques, and Applications in R is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology.

Data Mining For Scientific And Engineering Applications

Author : R.L. Grossman
ISBN : 9781461517337
Genre : Computers
File Size : 43. 43 MB
Format : PDF, ePub, Docs
Download : 522
Read : 235

Get This Book


Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications. Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering.

Data Mining

Author : Ian H. Witten
ISBN : 3446215336
Genre :
File Size : 52. 75 MB
Format : PDF, ePub
Download : 267
Read : 390

Get This Book



R Data Mining Blueprints

Author : Pradeepta Mishra
ISBN : 9781783989690
Genre : Computers
File Size : 77. 87 MB
Format : PDF, Kindle
Download : 119
Read : 1089

Get This Book


Learn about data mining with real-world datasets About This Book Diverse real-world datasets to teach data mining techniques Practical and focused on real-world data mining cases, this book covers concepts such as spatial data mining, text mining, social media mining, and web mining Real-world case studies illustrate various data mining techniques, taking you from novice to intermediate Who This Book Is For Data analysts from beginner to intermediate level who need a step-by-step helping hand in developing complex data mining projects are the ideal audience for this book. They should have prior knowledge of basic statistics and little bit of programming language experience in any tool or platform. What You Will Learn Make use of statistics and programming to learn data mining concepts and its applications Use R Programming to apply statistical models on data Create predictive models to be applied for performing classification, prediction and recommendation Use of various libraries available on R CRAN (comprehensive R archives network) in data mining Apply data management steps in handling large datasets Learn various data visualization libraries available in R for representing data Implement various dimension reduction techniques to handle large datasets Acquire knowledge about neural network concept drawn from computer science and its applications in data mining In Detail The R language is a powerful open source functional programming language. At its core, R is a statistical programming language that provides impressive tools for data mining and analysis. It enables you to create high-level graphics and offers an interface to other languages. This means R is best suited to produce data and visual analytics through customization scripts and commands, instead of the typical statistical tools that provide tick boxes and drop-down menus for users. This book explores data mining techniques and shows you how to apply different mining concepts to various statistical and data applications in a wide range of fields. We will teach you about R and its application to data mining, and give you relevant and useful information you can use to develop and improve your applications. It will help you complete complex data mining cases and guide you through handling issues you might encounter during projects. Style and approach This fast-paced guide will help you solve predictive modeling problems using the most popular data mining algorithms through simple, practical cases.

R In A Nutshell

Author : Joseph Adler
ISBN : 9783897216501
Genre : Computers
File Size : 77. 30 MB
Format : PDF, Docs
Download : 457
Read : 493

Get This Book


Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Data Mining For Business Applications

Author : Carlos A. Mota Soares
ISBN : 9781607506324
Genre : Computers
File Size : 55. 61 MB
Format : PDF, ePub, Mobi
Download : 339
Read : 290

Get This Book


Data mining is already incorporated into the business processes in sectors such as health, retail, automotive, finance, telecom and insurance as well as in government. This book contains extended versions of a selection of papers presented at a series of workshops held between 2005 and 2008 on the subject of data mining for business applications.

Data Mining And Learning Analytics

Author : Samira ElAtia
ISBN : 9781118998236
Genre : Computers
File Size : 52. 36 MB
Format : PDF, Docs
Download : 256
Read : 232

Get This Book


Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) within educational mandates. Initial series of chapters offer a general overview of DM, Learning Analytics (LA), and data collection models in the context of educational research, while also defining and discussing data mining’s four guiding principles— prediction, clustering, rule association, and outlier detection. The next series of chapters showcase the pedagogical applications of Educational Data Mining (EDM) and feature case studies drawn from Business, Humanities, Health Sciences, Linguistics, and Physical Sciences education that serve to highlight the successes and some of the limitations of data mining research applications in educational settings. The remaining chapters focus exclusively on EDM’s emerging role in helping to advance educational research—from identifying at-risk students and closing socioeconomic gaps in achievement to aiding in teacher evaluation and facilitating peer conferencing. This book features contributions from international experts in a variety of fields. Includes case studies where data mining techniques have been effectively applied to advance teaching and learning Addresses applications of data mining in educational research, including: social networking and education; policy and legislation in the classroom; and identification of at-risk students Explores Massive Open Online Courses (MOOCs) to study the effectiveness of online networks in promoting learning and understanding the communication patterns among users and students Features supplementary resources including a primer on foundational aspects of educational mining and learning analytics Data Mining and Learning Analytics: Applications in Educational Research is written for both scientists in EDM and educators interested in using and integrating DM and LA to improve education and advance educational research.

Top Download:

Best Books