data mining concepts and techniques third edition the morgan kaufmann series in data management systems

Download Book Data Mining Concepts And Techniques Third Edition The Morgan Kaufmann Series In Data Management Systems in PDF format. You can Read Online Data Mining Concepts And Techniques Third Edition The Morgan Kaufmann Series In Data Management Systems here in PDF, EPUB, Mobi or Docx formats.

Data Mining Concepts And Techniques

Author : Jiawei Han
ISBN : 0123814804
Genre : Computers
File Size : 39. 78 MB
Format : PDF, Kindle
Download : 606
Read : 1037

Get This Book


Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Data Mining

Author : Ian H. Witten
ISBN : 9780128043578
Genre : Computers
File Size : 62. 29 MB
Format : PDF, Docs
Download : 768
Read : 475

Get This Book


Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches. Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research. Please visit the book companion website at http://www.cs.waikato.ac.nz/ml/weka/book.html It contains Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc. Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface Includes open-access online courses that introduce practical applications of the material in the book

Business Modeling And Data Mining

Author : Dorian Pyle
ISBN : 0080500455
Genre : Computers
File Size : 53. 54 MB
Format : PDF
Download : 379
Read : 337

Get This Book


Business Modeling and Data Mining demonstrates how real world business problems can be formulated so that data mining can answer them. The concepts and techniques presented in this book are the essential building blocks in understanding what models are and how they can be used practically to reveal hidden assumptions and needs, determine problems, discover data, determine costs, and explore the whole domain of the problem. This book articulately explains how to understand both the strategic and tactical aspects of any business problem, identify where the key leverage points are and determine where quantitative techniques of analysis -- such as data mining -- can yield most benefit. It addresses techniques for discovering how to turn colloquial expression and vague descriptions of a business problem first into qualitative models and then into well-defined quantitative models (using data mining) that can then be used to find a solution. The book completes the process by illustrating how these findings from data mining can be turned into strategic or tactical implementations. · Teaches how to discover, construct and refine models that are useful in business situations · Teaches how to design, discover and develop the data necessary for mining · Provides a practical approach to mining data for all business situations · Provides a comprehensive, easy-to-use, fully interactive methodology for building models and mining data · Provides pointers to supplemental online resources, including a downloadable version of the methodology and software tools.

Data Preparation For Data Mining Using Sas

Author : Mamdouh Refaat
ISBN : 0080491006
Genre : Computers
File Size : 26. 63 MB
Format : PDF, ePub, Docs
Download : 394
Read : 300

Get This Book


Are you a data mining analyst, who spends up to 80% of your time assuring data quality, then preparing that data for developing and deploying predictive models? And do you find lots of literature on data mining theory and concepts, but when it comes to practical advice on developing good mining views find little “how to information? And are you, like most analysts, preparing the data in SAS? This book is intended to fill this gap as your source of practical recipes. It introduces a framework for the process of data preparation for data mining, and presents the detailed implementation of each step in SAS. In addition, business applications of data mining modeling require you to deal with a large number of variables, typically hundreds if not thousands. Therefore, the book devotes several chapters to the methods of data transformation and variable selection. A complete framework for the data preparation process, including implementation details for each step. The complete SAS implementation code, which is readily usable by professional analysts and data miners. A unique and comprehensive approach for the treatment of missing values, optimal binning, and cardinality reduction. Assumes minimal proficiency in SAS and includes a quick-start chapter on writing SAS macros.

Data Mining Concepts And Techniques

Author : Jiawei Han
ISBN : 0123814804
Genre : Computers
File Size : 23. 27 MB
Format : PDF
Download : 277
Read : 727

Get This Book


Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Predictive Data Mining

Author : Sholom M. Weiss
ISBN : 1558604030
Genre : Computers
File Size : 34. 94 MB
Format : PDF, ePub, Docs
Download : 897
Read : 365

Get This Book


This book presents a unified view of data mining, drawing from statistics, machine learning, and databases and focuses on the preparation of data and the development of an overall problem-solving strategy. It will interest researchers, programmers, and developers in knowledge discovery and data mining in the disciplines of AI, software engineering, and databases.

Querying Xml

Author : Jim Melton
ISBN : 0080540163
Genre : Computers
File Size : 69. 25 MB
Format : PDF, ePub
Download : 460
Read : 582

Get This Book


XML has become the lingua franca for representing business data, for exchanging information between business partners and applications, and for adding structure– and sometimes meaning—to text-based documents. XML offers some special challenges and opportunities in the area of search: querying XML can produce very precise, fine-grained results, if you know how to express and execute those queries. For software developers and systems architects: this book teaches the most useful approaches to querying XML documents and repositories. This book will also help managers and project leaders grasp how “querying XML fits into the larger context of querying and XML. Querying XML provides a comprehensive background from fundamental concepts (What is XML?) to data models (the Infoset, PSVI, XQuery Data Model), to APIs (querying XML from SQL or Java) and more. * Presents the concepts clearly, and demonstrates them with illustrations and examples; offers a thorough mastery of the subject area in a single book. * Provides comprehensive coverage of XML query languages, and the concepts needed to understand them completely (such as the XQuery Data Model). * Shows how to query XML documents and data using: XPath (the XML Path Language); XQuery, soon to be the new W3C Recommendation for querying XML; XQuery's companion XQueryX; and SQL, featuring the SQL/XML * Includes an extensive set of XQuery, XPath, SQL, Java, and other examples, with links to downloadable code and data samples.

Principles Of Data Mining

Author : D. J. Hand
ISBN : 026208290X
Genre : Computers
File Size : 65. 31 MB
Format : PDF, ePub
Download : 486
Read : 224

Get This Book


The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics.

Database Modeling And Design

Author : Toby J. Teorey
ISBN : 9780123820211
Genre : Computers
File Size : 33. 48 MB
Format : PDF, ePub, Docs
Download : 547
Read : 690

Get This Book


Database Modeling and Design, Fifth Edition, focuses on techniques for database design in relational database systems. This extensively revised fifth edition features clear explanations, lots of terrific examples and an illustrative case, and practical advice, with design rules that are applicable to any SQL-based system. The common examples are based on real-life experiences and have been thoroughly class-tested. This book is immediately useful to anyone tasked with the creation of data models for the integration of large-scale enterprise data. It is ideal for a stand-alone data management course focused on logical database design, or a supplement to an introductory text for introductory database management. In-depth detail and plenty of real-world, practical examples throughout Loaded with design rules and illustrative case studies that are applicable to any SQL, UML, or XML-based system Immediately useful to anyone tasked with the creation of data models for the integration of large-scale enterprise data.

Instant Weka How To

Author : Boštjan Kaluža
ISBN : 9781782163879
Genre : Computers
File Size : 39. 69 MB
Format : PDF, ePub, Mobi
Download : 202
Read : 994

Get This Book


Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. A practical guide with examples and applications of programming Weka in Java.This book primarily targets Java developers who want to build Weka's data mining capabilities into their projects. Computer science students, data scientists, artificial intelligence programmers, and statistical programmers would equally gain from this book and would learn about essential tasks required to implement a project. Experience with Weka concepts is assumed.

Top Download:

Best Books