dynamic regression models for survival data statistics for biology and health

Download Book Dynamic Regression Models For Survival Data Statistics For Biology And Health in PDF format. You can Read Online Dynamic Regression Models For Survival Data Statistics For Biology And Health here in PDF, EPUB, Mobi or Docx formats.

Dynamic Regression Models For Survival Data

Author : Torben Martinussen
ISBN : 9780387339603
Genre : Medical
File Size : 41. 66 MB
Format : PDF, Kindle
Download : 523
Read : 796

Download Now


This book studies and applies modern flexible regression models for survival data with a special focus on extensions of the Cox model and alternative models with the aim of describing time-varying effects of explanatory variables. Use of the suggested models and methods is illustrated on real data examples, using the R-package timereg developed by the authors, which is applied throughout the book with worked examples for the data sets.

Statistical And Methodological Aspects Of Oral Health Research

Author : Emmanuel Lesaffre
ISBN : 047074412X
Genre : Mathematics
File Size : 76. 32 MB
Format : PDF, ePub, Mobi
Download : 265
Read : 466

Download Now


Statistical and Methodological Aspects of Oral Health Research provides oral health researchers with an overview of the methodological aspects that are important in planning, conducting and analyzing their research projects whilst also providing biostatisticians with an idea of the statistical problems that arise when tackling oral health research questions. This collection presents critical reflections on oral health research and offers advice on practical aspects of setting up research whilst introducing the reader to basic as well as advanced statistical methodology. Features: An introduction to research methodology and an exposition of the state of the art. A variety of examples from oral health research. Contributions from well-known oral health researchers, epidemiologists and biostatisticians, all of whom have rich experience in this area. Recent developments in statistical methodology prompted by a variety of dental applications. Presenting both an introduction to research methodology and an exposition of the latest advances in oral health research, this book will appeal both beginning and experienced oral health researchers as well as biostatisticians and epidemiologists.

Dynamic Prediction In Clinical Survival Analysis

Author : Hans van Houwelingen
ISBN : 9781439835432
Genre : Mathematics
File Size : 76. 96 MB
Format : PDF, Docs
Download : 990
Read : 555

Download Now


There is a huge amount of literature on statistical models for the prediction of survival after diagnosis of a wide range of diseases like cancer, cardiovascular disease, and chronic kidney disease. Current practice is to use prediction models based on the Cox proportional hazards model and to present those as static models for remaining lifetime after diagnosis or treatment. In contrast, Dynamic Prediction in Clinical Survival Analysis focuses on dynamic models for the remaining lifetime at later points in time, for instance using landmark models. Designed to be useful to applied statisticians and clinical epidemiologists, each chapter in the book has a practical focus on the issues of working with real life data. Chapters conclude with additional material either on the interpretation of the models, alternative models, or theoretical background. The book consists of four parts: Part I deals with prognostic models for survival data using (clinical) information available at baseline, based on the Cox model Part II is about prognostic models for survival data using (clinical) information available at baseline, when the proportional hazards assumption of the Cox model is violated Part III is dedicated to the use of time-dependent information in dynamic prediction Part IV explores dynamic prediction models for survival data using genomic data Dynamic Prediction in Clinical Survival Analysis summarizes cutting-edge research on the dynamic use of predictive models with traditional and new approaches. Aimed at applied statisticians who actively analyze clinical data in collaboration with clinicians, the analyses of the different data sets throughout the book demonstrate how predictive models can be obtained from proper data sets.

Analyzing Ecological Data

Author : Alain Zuur
ISBN : 9780387459721
Genre : Science
File Size : 59. 82 MB
Format : PDF, Docs
Download : 516
Read : 187

Download Now


This book provides a practical introduction to analyzing ecological data using real data sets. The first part gives a largely non-mathematical introduction to data exploration, univariate methods (including GAM and mixed modeling techniques), multivariate analysis, time series analysis, and spatial statistics. The second part provides 17 case studies. The case studies include topics ranging from terrestrial ecology to marine biology and can be used as a template for a reader’s own data analysis. Data from all case studies are available from www.highstat.com. Guidance on software is provided in the book.

Survival Analysis

Author : David G. Kleinbaum
ISBN : 9781475725551
Genre : Medical
File Size : 57. 26 MB
Format : PDF, ePub
Download : 163
Read : 467

Download Now


A straightforward and easy-to-follow introduction to the main concepts and techniques of the subject. It is based on numerous courses given by the author to students and researchers in the health sciences and is written with such readers in mind. A "user-friendly" layout includes numerous illustrations and exercises and the book is written in such a way so as to enable readers learn directly without the assistance of a classroom instructor. Throughout, there is an emphasis on presenting each new topic backed by real examples of a survival analysis investigation, followed up with thorough analyses of real data sets. Each chapter concludes with practice exercises to help readers reinforce their understanding of the concepts covered, before going on to a more comprehensive test. Answers to both are included. Readers will enjoy David Kleinbaums style of presentation, making this an excellent introduction for all those coming to the subject for the first time.

Survival And Event History Analysis

Author : Odd Aalen
ISBN : 9780387685601
Genre : Mathematics
File Size : 64. 62 MB
Format : PDF, Mobi
Download : 957
Read : 1240

Download Now


The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty; they allow sensible interpretations of a number of surprising artifacts seen in population data. The stochastic process framework is naturally connected to causality. The authors show how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously. To make the material accessible to the reader, a large number of practical examples, mainly from medicine, are developed in detail. Stochastic processes are introduced in an intuitive and non-technical manner. The book is aimed at investigators who use event history methods and want a better understanding of the statistical concepts. It is suitable as a textbook for graduate courses in statistics and biostatistics.

The Statistical Analysis Of Interval Censored Failure Time Data

Author : Jianguo Sun
ISBN : 0387371192
Genre : Mathematics
File Size : 44. 34 MB
Format : PDF
Download : 751
Read : 244

Download Now


This book collects and unifies statistical models and methods that have been proposed for analyzing interval-censored failure time data. It provides the first comprehensive coverage of the topic of interval-censored data and complements the books on right-censored data. The focus of the book is on nonparametric and semiparametric inferences, but it also describes parametric and imputation approaches. This book provides an up-to-date reference for people who are conducting research on the analysis of interval-censored failure time data as well as for those who need to analyze interval-censored data to answer substantive questions.

Top Download:

Best Books