dynamical systems differential equations maps and chaotic behaviour

Download Book Dynamical Systems Differential Equations Maps And Chaotic Behaviour in PDF format. You can Read Online Dynamical Systems Differential Equations Maps And Chaotic Behaviour here in PDF, EPUB, Mobi or Docx formats.

Dynamical Systems

Author : C.M. Place
ISBN : 9781351454278
Genre : Mathematics
File Size : 44. 19 MB
Format : PDF, Mobi
Download : 646
Read : 510

Get This Book

This text discusses the qualitative properties of dynamical systems including both differential equations and maps. The approach taken relies heavily on examples (supported by extensive exercises, hints to solutions and diagrams) to develop the material, including a treatment of chaotic behavior. The unprecedented popular interest shown in recent years in the chaotic behavior of discrete dynamic systems including such topics as chaos and fractals has had its impact on the undergraduate and graduate curriculum. However there has, until now, been no text which sets out this developing area of mathematics within the context of standard teaching of ordinary differential equations. Applications in physics, engineering, and geology are considered and introductions to fractal imaging and cellular automata are given.

Differential Equations Dynamical Systems And An Introduction To Chaos

Author : Morris W. Hirsch
ISBN : 9780123820105
Genre : Mathematics
File Size : 57. 39 MB
Format : PDF
Download : 210
Read : 566

Get This Book

Hirsch, Devaney, and Smale's classic Differential Equations, Dynamical Systems, and an Introduction to Chaos has been used by professors as the primary text for undergraduate and graduate level courses covering differential equations. It provides a theoretical approach to dynamical systems and chaos written for a diverse student population among the fields of mathematics, science, and engineering. Prominent experts provide everything students need to know about dynamical systems as students seek to develop sufficient mathematical skills to analyze the types of differential equations that arise in their area of study. The authors provide rigorous exercises and examples clearly and easily by slowly introducing linear systems of differential equations. Calculus is required as specialized advanced topics not usually found in elementary differential equations courses are included, such as exploring the world of discrete dynamical systems and describing chaotic systems. Classic text by three of the world's most prominent mathematicians Continues the tradition of expository excellence Contains updated material and expanded applications for use in applied studies

Differential Equations And Dynamical Systems

Author : Lawrence Perko
ISBN : 9781461300038
Genre : Mathematics
File Size : 29. 8 MB
Format : PDF, Kindle
Download : 357
Read : 711

Get This Book

This textbook presents a systematic study of the qualitative and geometric theory of nonlinear differential equations and dynamical systems. Although the main topic of the book is the local and global behavior of nonlinear systems and their bifurcations, a thorough treatment of linear systems is given at the beginning of the text. All the material necessary for a clear understanding of the qualitative behavior of dynamical systems is contained in this textbook, including an outline of the proof and examples illustrating the proof of the Hartman-Grobman theorem. In addition to minor corrections and updates throughout, this new edition includes materials on higher order Melnikov theory and the bifurcation of limit cycles for planar systems of differential equations.

Introduction To Applied Nonlinear Dynamical Systems And Chaos

Author : Stephen Wiggins
ISBN : 9781475740677
Genre : Mathematics
File Size : 81. 54 MB
Format : PDF, ePub, Mobi
Download : 382
Read : 867

Get This Book

This volume is an introduction to applied nonlinear dynamics and chaos. The emphasis is on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains an extensive bibliography and a detailed glossary of terms.


Author : Kathleen Alligood
ISBN : 9783642592812
Genre : Mathematics
File Size : 46. 84 MB
Format : PDF, Kindle
Download : 786
Read : 250

Get This Book

BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.

An Introduction To Dynamical Systems

Author : Rex Clark Robinson
ISBN : 9780821891353
Genre : Mathematics
File Size : 73. 84 MB
Format : PDF, ePub
Download : 766
Read : 894

Get This Book

This book gives a mathematical treatment of the introduction to qualitative differential equations and discrete dynamical systems. The treatment includes theoretical proofs, methods of calculation, and applications. The two parts of the book, continuous time of differential equations and discrete time of dynamical systems, can be covered independently in one semester each or combined together into a year long course. The material on differential equations introduces the qualitative or geometric approach through a treatment of linear systems in any dimension. There follows chapters where equilibria are the most important feature, where scalar (energy) functions is the principal tool, where periodic orbits appear, and finally, chaotic systems of differential equations. The many different approaches are systematically introduced through examples and theorems. The material on discrete dynamical systems starts with maps of one variable and proceeds to systems in higher dimensions. The treatment starts with examples where the periodic points can be found explicitly and then introduces symbolic dynamics to analyze where they can be shown to exist but not given in explicit form. Chaotic systems are presented both mathematically and more computationally using Lyapunov exponents. With the one-dimensional maps as models, the multidimensional maps cover the same material in higher dimensions. This higher dimensional material is less computational and more conceptual and theoretical. The final chapter on fractals introduces various dimensions which is another computational tool for measuring the complexity of a system. It also treats iterated function systems which give examples of complicated sets. In the second edition of the book, much of the material has been rewritten to clarify the presentation. Also, some new material has been included in both parts of the book. This book can be used as a textbook for an advanced undergraduate course on ordinary differential equations and/or dynamical systems. Prerequisites are standard courses in calculus (single variable and multivariable), linear algebra, and introductory differential equations.

An Introduction To Dynamical Systems And Chaos

Author : G.C. Layek
ISBN : 9788132225560
Genre : Mathematics
File Size : 55. 72 MB
Format : PDF, Mobi
Download : 803
Read : 384

Get This Book

The book discusses continuous and discrete systems in systematic and sequential approaches for all aspects of nonlinear dynamics. The unique feature of the book is its mathematical theories on flow bifurcations, oscillatory solutions, symmetry analysis of nonlinear systems and chaos theory. The logically structured content and sequential orientation provide readers with a global overview of the topic. A systematic mathematical approach has been adopted, and a number of examples worked out in detail and exercises have been included. Chapters 1–8 are devoted to continuous systems, beginning with one-dimensional flows. Symmetry is an inherent character of nonlinear systems, and the Lie invariance principle and its algorithm for finding symmetries of a system are discussed in Chap. 8. Chapters 9–13 focus on discrete systems, chaos and fractals. Conjugacy relationship among maps and its properties are described with proofs. Chaos theory and its connection with fractals, Hamiltonian flows and symmetries of nonlinear systems are among the main focuses of this book. Over the past few decades, there has been an unprecedented interest and advances in nonlinear systems, chaos theory and fractals, which is reflected in undergraduate and postgraduate curricula around the world. The book is useful for courses in dynamical systems and chaos, nonlinear dynamics, etc., for advanced undergraduate and postgraduate students in mathematics, physics and engineering.

Ordinary Differential Equations And Dynamical Systems

Author : Gerald Teschl
ISBN : 9780821883280
Genre : Mathematics
File Size : 21. 32 MB
Format : PDF, Kindle
Download : 410
Read : 1051

Get This Book

This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm-Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincare-Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman-Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale-Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

Introduction To Chaos

Author : H Nagashima
ISBN : 1420050818
Genre : Science
File Size : 52. 23 MB
Format : PDF, Mobi
Download : 123
Read : 1169

Get This Book

Introduction to Chaos: Physics and Mathematics of Chaotic Phenomena focuses on explaining the fundamentals of the subject by studying examples from one-dimensional maps and simple differential equations. The book includes numerous line diagrams and computer graphics as well as problems and solutions to test readers' understanding. The book is written primarily for advanced undergraduate students in science yet postgraduate students and researchers in mathematics, physics, and other areas of science will also find the book useful.

Dynamical Systems

Author : Werner Krabs
ISBN : 3642137229
Genre : Mathematics
File Size : 74. 65 MB
Format : PDF
Download : 284
Read : 651

Get This Book

At the end of the nineteenth century Lyapunov and Poincaré developed the so called qualitative theory of differential equations and introduced geometric- topological considerations which have led to the concept of dynamical systems. In its present abstract form this concept goes back to G.D. Birkhoff. This is also the starting point of Chapter 1 of this book in which uncontrolled and controlled time-continuous and time-discrete systems are investigated. Controlled dynamical systems could be considered as dynamical systems in the strong sense, if the controls were incorporated into the state space. We, however, adapt the conventional treatment of controlled systems as in control theory. We are mainly interested in the question of controllability of dynamical systems into equilibrium states. In the non-autonomous time-discrete case we also consider the problem of stabilization. We conclude with chaotic behavior of autonomous time discrete systems and actual real-world applications.

Top Download:

Best Books