dynamical systems differential equations maps and chaotic behaviour

Download Book Dynamical Systems Differential Equations Maps And Chaotic Behaviour in PDF format. You can Read Online Dynamical Systems Differential Equations Maps And Chaotic Behaviour here in PDF, EPUB, Mobi or Docx formats.

Dynamical Systems

Author : C.M. Place
ISBN : 9781351454278
Genre : Mathematics
File Size : 49. 55 MB
Format : PDF, Kindle
Download : 970
Read : 942

Get This Book


This text discusses the qualitative properties of dynamical systems including both differential equations and maps. The approach taken relies heavily on examples (supported by extensive exercises, hints to solutions and diagrams) to develop the material, including a treatment of chaotic behavior. The unprecedented popular interest shown in recent years in the chaotic behavior of discrete dynamic systems including such topics as chaos and fractals has had its impact on the undergraduate and graduate curriculum. However there has, until now, been no text which sets out this developing area of mathematics within the context of standard teaching of ordinary differential equations. Applications in physics, engineering, and geology are considered and introductions to fractal imaging and cellular automata are given.

Differential Equations Dynamical Systems And An Introduction To Chaos

Author : Morris W. Hirsch
ISBN : 9780123820105
Genre : Mathematics
File Size : 58. 76 MB
Format : PDF, Mobi
Download : 857
Read : 1237

Get This Book


Hirsch, Devaney, and Smale's classic Differential Equations, Dynamical Systems, and an Introduction to Chaos has been used by professors as the primary text for undergraduate and graduate level courses covering differential equations. It provides a theoretical approach to dynamical systems and chaos written for a diverse student population among the fields of mathematics, science, and engineering. Prominent experts provide everything students need to know about dynamical systems as students seek to develop sufficient mathematical skills to analyze the types of differential equations that arise in their area of study. The authors provide rigorous exercises and examples clearly and easily by slowly introducing linear systems of differential equations. Calculus is required as specialized advanced topics not usually found in elementary differential equations courses are included, such as exploring the world of discrete dynamical systems and describing chaotic systems. Classic text by three of the world's most prominent mathematicians Continues the tradition of expository excellence Contains updated material and expanded applications for use in applied studies

Mathematik F R Physiker Band 2

Author : Helmut Fischer
ISBN : 9783658004774
Genre : Science
File Size : 56. 87 MB
Format : PDF, ePub, Mobi
Download : 273
Read : 743

Get This Book


Wie im ersten Band ihres Werkes stellen die Autoren die mathematischen Grundlagen der Physik in gut zugänglicher und ansprechender Form dar. Das Buch eignet sich sowohl für das Selbststudium als auch zur Begleitung von Vorlesungen.

An Introduction To Dynamical Systems

Author : D. K. Arrowsmith
ISBN : 0521316502
Genre : Mathematics
File Size : 43. 63 MB
Format : PDF, ePub, Docs
Download : 790
Read : 152

Get This Book


In recent years there has been an explosion of research centred on the appearance of so-called 'chaotic behaviour'. This book provides a largely self contained introduction to the mathematical structures underlying models of systems whose state changes with time, and which therefore may exhibit this sort of behaviour. The early part of this book is based on lectures given at the University of London and covers the background to dynamical systems, the fundamental properties of such systems, the local bifurcation theory of flows and diffeomorphisms, Anosov automorphism, the horseshoe diffeomorphism and the logistic map and area preserving planar maps . The authors then go on to consider current research in this field such as the perturbation of area-preserving maps of the plane and the cylinder. This book, which has a great number of worked examples and exercises, many with hints, and over 200 figures, will be a valuable first textbook to both senior undergraduates and postgraduate students in mathematics, physics, engineering, and other areas in which the notions of qualitative dynamics are employed.

An Introduction To Dynamical Systems And Chaos

Author : G.C. Layek
ISBN : 9788132225560
Genre : Mathematics
File Size : 54. 24 MB
Format : PDF, ePub
Download : 259
Read : 1203

Get This Book


The book discusses continuous and discrete systems in systematic and sequential approaches for all aspects of nonlinear dynamics. The unique feature of the book is its mathematical theories on flow bifurcations, oscillatory solutions, symmetry analysis of nonlinear systems and chaos theory. The logically structured content and sequential orientation provide readers with a global overview of the topic. A systematic mathematical approach has been adopted, and a number of examples worked out in detail and exercises have been included. Chapters 1–8 are devoted to continuous systems, beginning with one-dimensional flows. Symmetry is an inherent character of nonlinear systems, and the Lie invariance principle and its algorithm for finding symmetries of a system are discussed in Chap. 8. Chapters 9–13 focus on discrete systems, chaos and fractals. Conjugacy relationship among maps and its properties are described with proofs. Chaos theory and its connection with fractals, Hamiltonian flows and symmetries of nonlinear systems are among the main focuses of this book. Over the past few decades, there has been an unprecedented interest and advances in nonlinear systems, chaos theory and fractals, which is reflected in undergraduate and postgraduate curricula around the world. The book is useful for courses in dynamical systems and chaos, nonlinear dynamics, etc., for advanced undergraduate and postgraduate students in mathematics, physics and engineering.

Chaos

Author : Kathleen Alligood
ISBN : 9783642592812
Genre : Mathematics
File Size : 37. 15 MB
Format : PDF, Kindle
Download : 559
Read : 860

Get This Book


BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.

Chaotic Oscillations In Mechanical Systems

Author : Tomasz Kapitaniak
ISBN : 0719033640
Genre : Chaotic behavior in systems.
File Size : 46. 30 MB
Format : PDF
Download : 768
Read : 348

Get This Book


Offers graduates and researchers in theoretical or applied mechanics, mathematics, and physics a unified conceptual framework for dealing with problems of chaotic oscillations of mechanical systems. Oscillating between theoretical and practical aspects, defines attractors and chaotic behavior, illustrates methods for determining and investigating oscillations, provides classical equations and examples of application and analysis in mechanical and civil engineering. Distributed in the US by St. Martin's Press. Annotation copyrighted by Book News, Inc., Portland, OR

Chaos In Discrete Dynamical Systems

Author : Ralph Abraham
ISBN : 0387943005
Genre : Computers
File Size : 61. 76 MB
Format : PDF, ePub, Docs
Download : 558
Read : 547

Get This Book


Chaos Theory is a synonym for dynamical systems theory, a branch of mathematics. Dynamical systems come in three flavors: flows (continuous dynamical systems), cascades (discrete, reversible, dynamical systems), and semi-cascades (discrete, irreversible, dynamical systems). Flows and semi-cascades are the classical systems iuntroduced by Poincare a centry ago, and are the subject of the extensively illustrated book: "Dynamics: The Geometry of Behavior," Addison-Wesley 1992 authored by Ralph Abraham and Shaw. Semi- cascades, also know as iterated function systems, are a recent innovation, and have been well-studied only in one dimension (the simplest case) since about 1950. The two-dimensional case is the current frontier of research. And from the computer graphcis of the leading researcher come astonishing views of the new landscape, such as the Julia and Mandelbrot sets in the beautiful books by Heinz-Otto Peigen and his co-workers. Now, the new theory of critical curves developed by Mira and his students and Toulouse provide a unique opportunity to explain the basic concepts of the theory of chaos and bifurcations for discete dynamical systems in two-dimensions. The materials in the book and on the accompanying disc are not solely developed only with the researcher and professional in mind, but also with consideration for the student. The book is replete with some 100 computer graphics to illustrate the material, and the CD-ROM contains full-color animations that are tied directly into the subject matter of the book, itself. In addition, much of this material has also been class-tested by the authors. The cross-platform CD also contains a software program called ENDO, which enables users to create their own 2-D imagery with X-Windows. Maple scripts are provided which give the reader the option of working directly with the code from which the graphcs in the book were

Thermodynamics Of Chaotic Systems

Author : Christian Beck
ISBN : 0521484510
Genre : Mathematics
File Size : 44. 40 MB
Format : PDF, Kindle
Download : 311
Read : 1113

Get This Book


This book deals with the various thermodynamic concepts used for the analysis of nonlinear dynamical systems. The most important invariants used to characterize chaotic systems are introduced in a way that stresses the interconnections with thermodynamics and statistical mechanics. Among the subjects treated are probabilistic aspects of chaotic dynamics, the symbolic dynamics technique, information measures, the maximum entropy principle, general thermodynamic relations, spin systems, fractals and multifractals, expansion rate and information loss, the topological pressure, transfer operator methods, repellers and escape. The more advanced chapters deal with the thermodynamic formalism for expanding maps, thermodynamic analysis of chaotic systems with several intensive parameters, and phase transitions in nonlinear dynamics.

Shadowing In Dynamical Systems

Author : K.J. Palmer
ISBN : 0792361792
Genre : Mathematics
File Size : 56. 83 MB
Format : PDF, ePub, Mobi
Download : 345
Read : 737

Get This Book


In this book the theory of hyperbolic sets is developed, both for diffeomorphisms and flows, with an emphasis on shadowing. We show that hyperbolic sets are expansive and have the shadowing property. Then we use shadowing to prove that hyperbolic sets are robust under perturbation, that they have an asymptotic phase property and also that the dynamics near a transversal homoclinic orbit is chaotic. It turns out that chaotic dynamical systems arising in practice are not quite hyperbolic. However, they possess enough hyperbolicity to enable us to use shadowing ideas to give computer-assisted proofs that computed orbits of such systems can be shadowed by true orbits for long periods of time, that they possess periodic orbits of long periods and that it is really true that they are chaotic. Audience: This book is intended primarily for research workers in dynamical systems but could also be used in an advanced graduate course taken by students familiar with calculus in Banach spaces and with the basic existence theory for ordinary differential equations.

Top Download:

Best Books