# elementary functional analysis graduate texts in mathematics

**Download Book Elementary Functional Analysis Graduate Texts In Mathematics in PDF format. You can Read Online Elementary Functional Analysis Graduate Texts In Mathematics here in PDF, EPUB, Mobi or Docx formats.**

## Elementary Functional Analysis

**Author :**Barbara MacCluer

**ISBN :**9780387855295

**Genre :**Mathematics

**File Size :**38. 52 MB

**Format :**PDF, Docs

**Download :**158

**Read :**1204

Functional analysis arose in the early twentieth century and gradually, conquering one stronghold after another, became a nearly universal mathematical doctrine, not merely a new area of mathematics, but a new mathematical world view. Its appearance was the inevitable consequence of the evolution of all of nineteenth-century mathematics, in particular classical analysis and mathematical physics. Its original basis was formed by Cantor’s theory of sets and linear algebra. Its existence answered the question of how to state general principles of a broadly interpreted analysis in a way suitable for the most diverse situations. A.M. Vershik ([45], p. 438). This text evolved from the content of a one semester introductory course in fu- tional analysis that I have taught a number of times since 1996 at the University of Virginia. My students have included ?rst and second year graduate students prep- ing for thesis work in analysis, algebra, or topology, graduate students in various departments in the School of Engineering and Applied Science, and several und- graduate mathematics or physics majors. After a ?rst draft of the manuscript was completed, it was also used for an independent reading course for several und- graduates preparing for graduate school.

## Elementary Functional Analysis

**Author :**Marat V. Markin

**ISBN :**9783110614039

**Genre :**Mathematics

**File Size :**52. 6 MB

**Format :**PDF, ePub, Mobi

**Download :**700

**Read :**1125

While there is a plethora of excellent, but mostly "tell-it-all'' books on the subject, this one is intended to take a unique place in what today seems to be a still wide open niche for an introductory text on the basics of functional analysis to be taught within the existing constraints of the standard, for the United States, one-semester graduate curriculum (fifteen weeks with two seventy-five-minute lectures per week). The book consists of seven chapters and an appendix taking the reader from the fundamentals of abstract spaces (metric, vector, normed vector, and inner product), through the basics of linear operators and functionals, the three fundamental principles (the Hahn-Banach Theorem, the Uniform Boundedness Principle, the Open Mapping Theorem and its equivalents: the Inverse Mapping and Closed Graph Theorems) with their numerous profound implications and certain interesting applications, to the elements of the duality and reflexivity theory. Chapter 1 outlines some necessary preliminaries, while the Appendix gives a concise discourse on the celebrated Axiom of Choice, its equivalents (the Hausdorff Maximal Principle, Zorn's Lemma, and Zermello's Well-Ordering Principle), and ordered sets. Being designed as a text to be used in a classroom, the book constantly calls for the student's actively mastering the knowledge of the subject matter. It contains 112 Problems, which are indispensable for understanding and moving forward. Many important statements are given as problems, a lot of these are frequently referred to and used in the main body. There are also 376 Exercises throughout the text, including Chapter 1 and the Appendix, which require of the student to prove or verify a statement or an example, fill in necessary details in a proof, or provide an intermediate step or a counterexample. They are also an inherent part of the material. More difficult problems are marked with an asterisk, many problem and exercises being supplied with "existential'' hints. The book is generous on Examples and contains numerous Remarks accompanying every definition and virtually each statement to discuss certain subtleties, raise questions on whether the converse assertions are true, whenever appropriate, or whether the conditions are essential. The prerequisites are set intentionally quite low, the students not being assumed to have taken graduate courses in real or complex analysis and general topology, to make the course accessible and attractive to a wider audience of STEM (science, technology, engineering, and mathematics) graduate students or advanced undergraduates with a solid background in calculus and linear algebra. With proper attention given to applications, plenty of examples, problems, and exercises, this well-designed text is ideal for a one-semester graduate course on the fundamentals of functional analysis for students in mathematics, physics, computer science, and engineering. ContentsPreliminariesMetric SpacesNormed Vector and Banach SpacesInner Product and Hilbert SpacesLinear Operators and FunctionalsThree Fundamental Principles of Linear Functional AnalysisDuality and ReflexivityThe Axiom of Choice and Equivalents

## Real And Functional Analysis

**Author :**Serge Lang

**ISBN :**9781461208976

**Genre :**Mathematics

**File Size :**90. 57 MB

**Format :**PDF, ePub

**Download :**412

**Read :**927

This book is meant as a text for a first-year graduate course in analysis. In a sense, it covers the same topics as elementary calculus but treats them in a manner suitable for people who will be using it in further mathematical investigations. The organization avoids long chains of logical interdependence, so that chapters are mostly independent. This allows a course to omit material from some chapters without compromising the exposition of material from later chapters.

## Functional Analysis

**Author :**Markus Haase

**ISBN :**9780821891711

**Genre :**Mathematics

**File Size :**89. 89 MB

**Format :**PDF

**Download :**130

**Read :**975

This book introduces functional analysis at an elementary level without assuming any background in real analysis, for example on metric spaces or Lebesgue integration. It focuses on concepts and methods relevant in applied contexts such as variational methods on Hilbert spaces, Neumann series, eigenvalue expansions for compact self-adjoint operators, weak differentiation and Sobolev spaces on intervals, and model applications to differential and integral equations. Beyond that, the final chapters on the uniform boundedness theorem, the open mapping theorem and the Hahn-Banach theorem provide a stepping-stone to more advanced texts. The exposition is clear and rigorous, featuring full and detailed proofs. Many examples illustrate the new notions and results. Each chapter concludes with a large collection of exercises, some of which are referred to in the margin of the text, tailor-made in order to guide the student digesting the new material. Optional sections and chapters supplement the mandatory parts and allow for modular teaching spanning from basic to honors track level.

## Full 3d Seismic Waveform Inversion

**Author :**Po Chen

**ISBN :**9783319166049

**Genre :**Science

**File Size :**59. 72 MB

**Format :**PDF, Kindle

**Download :**557

**Read :**990

This book introduces a methodology for solving the seismic inverse problem using purely numerical solutions built on 3D wave equations and which is free of the approximations or simplifications that are common in classical seismic inversion methodologies and therefore applicable to arbitrary 3D geological media and seismic source models. Source codes provided allow readers to experiment with the calculations demonstrated and also explore their own applications.

## Functional Analysis Spectral Theory And Applications

**Author :**Manfred Einsiedler

**ISBN :**9783319585406

**Genre :**Mathematics

**File Size :**90. 4 MB

**Format :**PDF, ePub, Docs

**Download :**511

**Read :**704

This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.

## Beginning Functional Analysis

**Author :**Karen Saxe

**ISBN :**9781475736878

**Genre :**Mathematics

**File Size :**31. 79 MB

**Format :**PDF, Kindle

**Download :**840

**Read :**1109

The unifying approach of functional analysis is to view functions as points in abstract vector space and the differential and integral operators as linear transformations on these spaces. The author's goal is to present the basics of functional analysis in a way that makes them comprehensible to a student who has completed courses in linear algebra and real analysis, and to develop the topics in their historical contexts.

## A Course In Functional Analysis

**Author :**John B. Conway

**ISBN :**9781475738285

**Genre :**Mathematics

**File Size :**33. 63 MB

**Format :**PDF, Docs

**Download :**409

**Read :**714

Functional analysis has become a sufficiently large area of mathematics that it is possible to find two research mathematicians, both of whom call themselves functional analysts, who have great difficulty understanding the work of the other. The common thread is the existence of a linear space with a topology or two (or more). Here the paths diverge in the choice of how that topology is defined and in whether to study the geometry of the linear space, or the linear operators on the space, or both. In this book I have tried to follow the common thread rather than any special topic. I have included some topics that a few years ago might have been thought of as specialized but which impress me as interesting and basic. Near the end of this work I gave into my natural temptation and included some operator theory that, though basic for operator theory, might be considered specialized by some functional analysts.

## Elementary Functional Analysis

**Author :**Charles Swartz

**ISBN :**9789813107526

**Genre :**Science

**File Size :**51. 77 MB

**Format :**PDF

**Download :**458

**Read :**216

This text is an introduction to functional analysis which requires readers to have a minimal background in linear algebra and real analysis at the first-year graduate level. Prerequisite knowledge of general topology or Lebesgue integration is not required. The book explains the principles and applications of functional analysis and explores the development of the basic properties of normed linear, inner product spaces and continuous linear operators defined in these spaces. Though Lebesgue integral is not discussed, the book offers an in-depth knowledge on the numerous applications of the abstract results of functional analysis in differential and integral equations, Banach limits, harmonic analysis, summability and numerical integration. Also covered in the book are versions of the spectral theorem for compact, symmetric operators and continuous, self adjoint operators.

## Essential Results Of Functional Analysis

**Author :**Robert J. Zimmer

**ISBN :**0226983382

**Genre :**Mathematics

**File Size :**71. 61 MB

**Format :**PDF

**Download :**917

**Read :**1087

Functional analysis is a broad mathematical area with strong connections to many domains within mathematics and physics. This book, based on a first-year graduate course taught by Robert J. Zimmer at the University of Chicago, is a complete, concise presentation of fundamental ideas and theorems of functional analysis. It introduces essential notions and results from many areas of mathematics to which functional analysis makes important contributions, and it demonstrates the unity of perspective and technique made possible by the functional analytic approach. Zimmer provides an introductory chapter summarizing measure theory and the elementary theory of Banach and Hilbert spaces, followed by a discussion of various examples of topological vector spaces, seminorms defining them, and natural classes of linear operators. He then presents basic results for a wide range of topics: convexity and fixed point theorems, compact operators, compact groups and their representations, spectral theory of bounded operators, ergodic theory, commutative C*-algebras, Fourier transforms, Sobolev embedding theorems, distributions, and elliptic differential operators. In treating all of these topics, Zimmer's emphasis is not on the development of all related machinery or on encyclopedic coverage but rather on the direct, complete presentation of central theorems and the structural framework and examples needed to understand them. Sets of exercises are included at the end of each chapter. For graduate students and researchers in mathematics who have mastered elementary analysis, this book is an entrée and reference to the full range of theory and applications in which functional analysis plays a part. For physics students and researchers interested in these topics, the lectures supply a thorough mathematical grounding.