# elements of algebraic topology

**Download Book Elements Of Algebraic Topology in PDF format. You can Read Online Elements Of Algebraic Topology here in PDF, EPUB, Mobi or Docx formats.**

## Elements Of Algebraic Topology

**Author :**James R. Munkres

**ISBN :**9780429962462

**Genre :**Mathematics

**File Size :**47. 34 MB

**Format :**PDF, ePub, Docs

**Download :**139

**Read :**660

Elements of Algebraic Topology provides the most concrete approach to the subject. With coverage of homology and cohomology theory, universal coefficient theorems, Kunneth theorem, duality in manifolds, and applications to classical theorems of point-set topology, this book is perfect for comunicating complex topics and the fun nature of algebraic topology for beginners.

## Elements Of Topology

**Author :**Tej Bahadur Singh

**ISBN :**9781482215663

**Genre :**Mathematics

**File Size :**25. 61 MB

**Format :**PDF

**Download :**350

**Read :**953

Topology is a large subject with many branches broadly categorized as algebraic topology, point-set topology, and geometric topology. Point-set topology is the main language for a broad variety of mathematical disciplines. Algebraic topology serves as a powerful tool for studying the problems in geometry and numerous other areas of mathematics. Elements of Topology provides a basic introduction to point-set topology and algebraic topology. It is intended for advanced undergraduate and beginning graduate students with working knowledge of analysis and algebra. Topics discussed include the theory of convergence, function spaces, topological transformation groups, fundamental groups, and covering spaces. The author makes the subject accessible by providing more than 250 worked examples and counterexamples with applications. The text also includes numerous end-of-section exercises to put the material into context.

## Homology Theory

**Author :**James W. Vick

**ISBN :**0387941266

**Genre :**Mathematics

**File Size :**21. 57 MB

**Format :**PDF, Kindle

**Download :**585

**Read :**1085

This book is designed to be an introduction to some of the basic ideas in the field of algebraic topology. In particular, it is devoted to the foundations and applications of homology theory. The only prerequisite for the student is a basic knowledge of abelian groups and point set topology. The essentials of singular homology are given in the first chapter, along with some of the most important applications. In this way the student can quickly see the importance of the material. The successive topics include attaching spaces, finite CW complexes, the Eilenberg-Steenrod axioms, cohomology products, manifolds, Poincare duality, and fixed point theory. Throughout the book, the approach is as illustrative as possible, with numerous examples and diagrams. Extremes of generality are sacrificed when they are likely to obscure the essential concepts involved. The book is intended to be easily read by students as a textbook for a course or as a source for individual study. This second edition has been expanded to include a new chapter on covering spaces, as well as additional illuminating exercises. The conceptual approach is again used to show how lifting problems give rise to the fundamental group and its properties.

## Elements Of Homology Theory

**Author :**Viktor Vasilʹevich Prasolov

**ISBN :**9780821838129

**Genre :**Mathematics

**File Size :**24. 66 MB

**Format :**PDF, Kindle

**Download :**309

**Read :**156

The book is a continuation of the previous book by the author (Elements of Combinatorial and Differential Topology, Graduate Studies in Mathematics, Volume 74, American Mathematical Society, 2006). It starts with the definition of simplicial homology and cohomology, with many examples and applications. Then the Kolmogorov-Alexander multiplication in cohomology is introduced. A significant part of the book is devoted to applications of simplicial homology and cohomology to obstruction theory, in particular, to characteristic classes of vector bundles. The later chapters are concerned with singular homology and cohomology, and Cech and de Rham cohomology. The book ends with various applications of homology to the topology of manifolds, some of which might be of interest to experts in the area. The book contains many problems; almost all of them are provided with hints or complete solutions.

## Algebraic Topology

**Author :**William Fulton

**ISBN :**9781461241805

**Genre :**Mathematics

**File Size :**66. 83 MB

**Format :**PDF, ePub, Docs

**Download :**919

**Read :**1063

To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ ential topology, etc.), we concentrate our attention on concrete prob lems in low dimensions, introducing only as much algebraic machin ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel opment of the subject. What would we like a student to know after a first course in to pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind ing numbers and degrees of mappings, fixed-point theorems; appli cations such as the Jordan curve theorem, invariance of domain; in dices of vector fields and Euler characteristics; fundamental groups

## Lectures On Algebraic Topology

**Author :**Sergeĭ Vladimirovich Matveev

**ISBN :**303719023X

**Genre :**Algebraic topology

**File Size :**70. 93 MB

**Format :**PDF, ePub, Docs

**Download :**167

**Read :**611

Algebraic topology is the study of the global properties of spaces by means of algebra. It is an important branch of modern mathematics with a wide degree of applicability to other fields, including geometric topology, differential geometry, functional analysis, differential equations, algebraic geometry, number theory, and theoretical physics. This book provides an introduction to the basic concepts and methods of algebraic topology for the beginner. It presents elements of both homology theory and homotopy theory, and includes various applications. The author's intention is to rely on the geometric approach by appealing to the reader's own intuition to help understanding. The numerous illustrations in the text also serve this purpose. Two features make the text different from the standard literature: first, special attention is given to providing explicit algorithms for calculating the homology groups and for manipulating the fundamental groups. Second, the book contains many exercises, all of which are supplied with hints or solutions. This makes the book suitable for both classroom use and for independent study.

## Algebraic Topology

**Author :**

**ISBN :**730210588X

**Genre :**Algebraic topology

**File Size :**70. 14 MB

**Format :**PDF, Kindle

**Download :**704

**Read :**635

## Algebraic Curves And Riemann Surfaces

**Author :**Rick Miranda

**ISBN :**9780821802687

**Genre :**Mathematics

**File Size :**48. 71 MB

**Format :**PDF, ePub, Mobi

**Download :**322

**Read :**1299

The book was easy to understand, with many examples. The exercises were well chosen, and served to give further examples and developments of the theory. --William Goldman, University of Maryland In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking center stage. But the main examples come from projective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Duality Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves and cohomology are introduced as a unifying device in the latter chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one semester of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-semester course in complex variables or a year-long course in algebraic geometry.

## Elements Of Differential Topology

**Author :**Anant R. Shastri

**ISBN :**9781439831632

**Genre :**Mathematics

**File Size :**28. 16 MB

**Format :**PDF, Docs

**Download :**176

**Read :**556

Derived from the author’s course on the subject, Elements of Differential Topology explores the vast and elegant theories in topology developed by Morse, Thom, Smale, Whitney, Milnor, and others. It begins with differential and integral calculus, leads you through the intricacies of manifold theory, and concludes with discussions on algebraic topology, algebraic/differential geometry, and Lie groups. The first two chapters review differential and integral calculus of several variables and present fundamental results that are used throughout the text. The next few chapters focus on smooth manifolds as submanifolds in a Euclidean space, the algebraic machinery of differential forms necessary for studying integration on manifolds, abstract smooth manifolds, and the foundation for homotopical aspects of manifolds. The author then discusses a central theme of the book: intersection theory. He also covers Morse functions and the basics of Lie groups, which provide a rich source of examples of manifolds. Exercises are included in each chapter, with solutions and hints at the back of the book. A sound introduction to the theory of smooth manifolds, this text ensures a smooth transition from calculus-level mathematical maturity to the level required to understand abstract manifolds and topology. It contains all standard results, such as Whitney embedding theorems and the Borsuk–Ulam theorem, as well as several equivalent definitions of the Euler characteristic.

## Basic Algebraic Topology

**Author :**Anant R. Shastri

**ISBN :**9781466562448

**Genre :**Mathematics

**File Size :**66. 21 MB

**Format :**PDF, ePub

**Download :**925

**Read :**812

Building on rudimentary knowledge of real analysis, point-set topology, and basic algebra, Basic Algebraic Topology provides plenty of material for a two-semester course in algebraic topology. The book first introduces the necessary fundamental concepts, such as relative homotopy, fibrations and cofibrations, category theory, cell complexes, and simplicial complexes. It then focuses on the fundamental group, covering spaces and elementary aspects of homology theory. It presents the central objects of study in topology visualization: manifolds. After developing the homology theory with coefficients, homology of the products, and cohomology algebra, the book returns to the study of manifolds, discussing Poincaré duality and the De Rham theorem. A brief introduction to cohomology of sheaves and Čech cohomology follows. The core of the text covers higher homotopy groups, Hurewicz’s isomorphism theorem, obstruction theory, Eilenberg-Mac Lane spaces, and Moore-Postnikov decomposition. The author then relates the homology of the total space of a fibration to that of the base and the fiber, with applications to characteristic classes and vector bundles. The book concludes with the basic theory of spectral sequences and several applications, including Serre’s seminal work on higher homotopy groups. Thoroughly classroom-tested, this self-contained text takes students all the way to becoming algebraic topologists. Historical remarks throughout the text make the subject more meaningful to students. Also suitable for researchers, the book provides references for further reading, presents full proofs of all results, and includes numerous exercises of varying levels.