exercises and solutions in statistical theory chapman hall crc texts in statistical science

Download Book Exercises And Solutions In Statistical Theory Chapman Hall Crc Texts In Statistical Science in PDF format. You can Read Online Exercises And Solutions In Statistical Theory Chapman Hall Crc Texts In Statistical Science here in PDF, EPUB, Mobi or Docx formats.

Exercises And Solutions In Biostatistical Theory

Author : Lawrence Kupper
ISBN : 9781439895023
Genre : Mathematics
File Size : 80. 39 MB
Format : PDF
Download : 252
Read : 413

Get This Book


Drawn from nearly four decades of Lawrence L. Kupper’s teaching experiences as a distinguished professor in the Department of Biostatistics at the University of North Carolina, Exercises and Solutions in Biostatistical Theory presents theoretical statistical concepts, numerous exercises, and detailed solutions that span topics from basic probability to statistical inference. The text links theoretical biostatistical principles to real-world situations, including some of the authors’ own biostatistical work that has addressed complicated design and analysis issues in the health sciences. This classroom-tested material is arranged sequentially starting with a chapter on basic probability theory, followed by chapters on univariate distribution theory and multivariate distribution theory. The last two chapters on statistical inference cover estimation theory and hypothesis testing theory. Each chapter begins with an in-depth introduction that summarizes the biostatistical principles needed to help solve the exercises. Exercises range in level of difficulty from fairly basic to more challenging (identified with asterisks). By working through the exercises and detailed solutions in this book, students will develop a deep understanding of the principles of biostatistical theory. The text shows how the biostatistical theory is effectively used to address important biostatistical issues in a variety of real-world settings. Mastering the theoretical biostatistical principles described in the book will prepare students for successful study of higher-level statistical theory and will help them become better biostatisticians.

Exercises And Solutions In Statistical Theory

Author : Lawrence L. Kupper
ISBN : 9781466572904
Genre : Mathematics
File Size : 44. 98 MB
Format : PDF
Download : 611
Read : 609

Get This Book


Exercises and Solutions in Statistical Theory helps students and scientists obtain an in-depth understanding of statistical theory by working on and reviewing solutions to interesting and challenging exercises of practical importance. Unlike similar books, this text incorporates many exercises that apply to real-world settings and provides much more thorough solutions. The exercises and selected detailed solutions cover from basic probability theory through to the theory of statistical inference. Many of the exercises deal with important, real-life scenarios in areas such as medicine, epidemiology, actuarial science, social science, engineering, physics, chemistry, biology, environmental health, and sports. Several exercises illustrate the utility of study design strategies, sampling from finite populations, maximum likelihood, asymptotic theory, latent class analysis, conditional inference, regression analysis, generalized linear models, Bayesian analysis, and other statistical topics. The book also contains references to published books and articles that offer more information about the statistical concepts. Designed as a supplement for advanced undergraduate and graduate courses, this text is a valuable source of classroom examples, homework problems, and examination questions. It is also useful for scientists interested in enhancing or refreshing their theoretical statistical skills. The book improves readers’ comprehension of the principles of statistical theory and helps them see how the principles can be used in practice. By mastering the theoretical statistical strategies necessary to solve the exercises, readers will be prepared to successfully study even higher-level statistical theory.

A Course In Large Sample Theory

Author : Thomas S. Ferguson
ISBN : 9781351470056
Genre : Mathematics
File Size : 27. 68 MB
Format : PDF, Kindle
Download : 704
Read : 1040

Get This Book


A Course in Large Sample Theory is presented in four parts. The first treats basic probabilistic notions, the second features the basic statistical tools for expanding the theory, the third contains special topics as applications of the general theory, and the fourth covers more standard statistical topics. Nearly all topics are covered in their multivariate setting.The book is intended as a first year graduate course in large sample theory for statisticians. It has been used by graduate students in statistics, biostatistics, mathematics, and related fields. Throughout the book there are many examples and exercises with solutions. It is an ideal text for self study.

Introduction To The Theory Of Statistical Inference

Author : Hannelore Liero
ISBN : 9781466503205
Genre : Mathematics
File Size : 80. 6 MB
Format : PDF
Download : 794
Read : 1314

Get This Book


Based on the authors’ lecture notes, Introduction to the Theory of Statistical Inference presents concise yet complete coverage of statistical inference theory, focusing on the fundamental classical principles. Suitable for a second-semester undergraduate course on statistical inference, the book offers proofs to support the mathematics. It illustrates core concepts using cartoons and provides solutions to all examples and problems. Highlights Basic notations and ideas of statistical inference are explained in a mathematically rigorous, but understandable, form Classroom-tested and designed for students of mathematical statistics Examples, applications of the general theory to special cases, exercises, and figures provide a deeper insight into the material Solutions provided for problems formulated at the end of each chapter Combines the theoretical basis of statistical inference with a useful applied toolbox that includes linear models Theoretical, difficult, or frequently misunderstood problems are marked The book is aimed at advanced undergraduate students, graduate students in mathematics and statistics, and theoretically-interested students from other disciplines. Results are presented as theorems and corollaries. All theorems are proven and important statements are formulated as guidelines in prose. With its multipronged and student-tested approach, this book is an excellent introduction to the theory of statistical inference.

Statistical Theory

Author : Felix Abramovich
ISBN : 9781482211849
Genre : Mathematics
File Size : 52. 75 MB
Format : PDF, Kindle
Download : 881
Read : 895

Get This Book


Designed for a one-semester advanced undergraduate or graduate course, Statistical Theory: A Concise Introduction clearly explains the underlying ideas and principles of major statistical concepts, including parameter estimation, confidence intervals, hypothesis testing, asymptotic analysis, Bayesian inference, and elements of decision theory. It introduces these topics on a clear intuitive level using illustrative examples in addition to the formal definitions, theorems, and proofs. Based on the authors’ lecture notes, this student-oriented, self-contained book maintains a proper balance between the clarity and rigor of exposition. In a few cases, the authors present a "sketched" version of a proof, explaining its main ideas rather than giving detailed technical mathematical and probabilistic arguments. Chapters and sections marked by asterisks contain more advanced topics and may be omitted. A special chapter on linear models shows how the main theoretical concepts can be applied to the well-known and frequently used statistical tool of linear regression. Requiring no heavy calculus, simple questions throughout the text help students check their understanding of the material. Each chapter also includes a set of exercises that range in level of difficulty.

Exercises And Solutions In Statistical Theory

Author : Lawrence L. Kupper
ISBN : 9780415661959
Genre : Mathematics
File Size : 77. 33 MB
Format : PDF, Docs
Download : 889
Read : 414

Get This Book


Exercises and Solutions in Statistical Theory helps students and scientists obtain an in-depth understanding of statistical theory by working on and reviewing solutions to interesting and challenging exercises of practical importance. Unlike similar books, this text incorporates many exercises that apply to real-world settings and provides much more thorough solutions. The exercises and selected detailed solutions cover from basic probability theory through to the theory of statistical inference. Many of the exercises deal with important, real-life scenarios in areas such as medicine, epidemiology, actuarial science, social science, engineering, physics, chemistry, biology, environmental health, and sports. Several exercises illustrate the utility of study design strategies, sampling from finite populations, maximum likelihood, asymptotic theory, latent class analysis, conditional inference, regression analysis, generalized linear models, Bayesian analysis, and other statistical topics. The book also contains references to published books and articles that offer more information about the statistical concepts. Designed as a supplement for advanced undergraduate and graduate courses, this text is a valuable source of classroom examples, homework problems, and examination questions. It is also useful for scientists interested in enhancing or refreshing their theoretical statistical skills. The book improves readers’ comprehension of the principles of statistical theory and helps them see how the principles can be used in practice. By mastering the theoretical statistical strategies necessary to solve the exercises, readers will be prepared to successfully study even higher-level statistical theory.

Stochastic Modeling And Mathematical Statistics

Author : Francisco J. Samaniego
ISBN : 9781466560468
Genre : Mathematics
File Size : 22. 55 MB
Format : PDF, ePub, Mobi
Download : 366
Read : 1209

Get This Book


Provides a Solid Foundation for Statistical Modeling and Inference and Demonstrates Its Breadth of Applicability Stochastic Modeling and Mathematical Statistics: A Text for Statisticians and Quantitative Scientists addresses core issues in post-calculus probability and statistics in a way that is useful for statistics and mathematics majors as well as students in the quantitative sciences. The book’s conversational tone, which provides the mathematical justification behind widely used statistical methods in a reader-friendly manner, and the book’s many examples, tutorials, exercises and problems for solution, together constitute an effective resource that students can read and learn from and instructors can count on as a worthy complement to their lectures. Using classroom-tested approaches that engage students in active learning, the text offers instructors the flexibility to control the mathematical level of their course. It contains the mathematical detail that is expected in a course for "majors" but is written in a way that emphasizes the intuitive content in statistical theory and the way theoretical results are used in practice. More than 1000 exercises and problems at varying levels of difficulty and with a broad range of topical focus give instructors many options in assigning homework and provide students with many problems on which to practice and from which to learn.

Introduction To Probability

Author : Joseph K. Blitzstein
ISBN : 9781498759762
Genre : Mathematics
File Size : 83. 41 MB
Format : PDF, Kindle
Download : 150
Read : 397

Get This Book


Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.

Theoretical Statistics

Author : Robert W. Keener
ISBN : 0387938397
Genre : Mathematics
File Size : 50. 19 MB
Format : PDF, Mobi
Download : 156
Read : 150

Get This Book


Intended as the text for a sequence of advanced courses, this book covers major topics in theoretical statistics in a concise and rigorous fashion. The discussion assumes a background in advanced calculus, linear algebra, probability, and some analysis and topology. Measure theory is used, but the notation and basic results needed are presented in an initial chapter on probability, so prior knowledge of these topics is not essential. The presentation is designed to expose students to as many of the central ideas and topics in the discipline as possible, balancing various approaches to inference as well as exact, numerical, and large sample methods. Moving beyond more standard material, the book includes chapters introducing bootstrap methods, nonparametric regression, equivariant estimation, empirical Bayes, and sequential design and analysis. The book has a rich collection of exercises. Several of them illustrate how the theory developed in the book may be used in various applications. Solutions to many of the exercises are included in an appendix.

Analysis Of Categorical Data With R

Author : Christopher R. Bilder
ISBN : 9781439855676
Genre : Mathematics
File Size : 48. 27 MB
Format : PDF, Docs
Download : 588
Read : 710

Get This Book


Learn How to Properly Analyze Categorical Data Analysis of Categorical Data with R presents a modern account of categorical data analysis using the popular R software. It covers recent techniques of model building and assessment for binary, multicategory, and count response variables and discusses fundamentals, such as odds ratio and probability estimation. The authors give detailed advice and guidelines on which procedures to use and why to use them. The Use of R as Both a Data Analysis Method and a Learning Tool Requiring no prior experience with R, the text offers an introduction to the essential features and functions of R. It incorporates numerous examples from medicine, psychology, sports, ecology, and other areas, along with extensive R code and output. The authors use data simulation in R to help readers understand the underlying assumptions of a procedure and then to evaluate the procedure’s performance. They also present many graphical demonstrations of the features and properties of various analysis methods. Web Resource The data sets and R programs from each example are available at www.chrisbilder.com/categorical. The programs include code used to create every plot and piece of output. Many of these programs contain code to demonstrate additional features or to perform more detailed analyses than what is in the text. Designed to be used in tandem with the book, the website also uniquely provides videos of the authors teaching a course on the subject. These videos include live, in-class recordings, which instructors may find useful in a blended or flipped classroom setting. The videos are also suitable as a substitute for a short course.

Top Download:

Best Books