forecasting time series and regression with cd rom forecasting time series regression

Download Book Forecasting Time Series And Regression With Cd Rom Forecasting Time Series Regression in PDF format. You can Read Online Forecasting Time Series And Regression With Cd Rom Forecasting Time Series Regression here in PDF, EPUB, Mobi or Docx formats.

Forecasting Time Series And Regression

Author : Richard T. O'Connell
ISBN : 0534409776
Genre : Mathematics
File Size : 72. 46 MB
Format : PDF, Docs
Download : 923
Read : 829

Get This Book


Awarded Outstanding Academic Book by CHOICE magazine in its first edition, FORECASTING, TIME SERIES, AND REGRESSION: AN APPLIED APPROACH illustrates the vital importance of forecasting and the various statistical techniques that can be used to produce them. With an emphasis on applications, this book provides both the conceptual development and practical motivation you need to effectively implement forecasts of your own. You'll understand why using forecasts to make intelligent decisions in marketing, finance, personnel management, production scheduling, process control, and strategic management is so vital.

Forecasting And Time Series

Author : Bruce L. Bowerman
ISBN : 0534379699
Genre : Business & Economics
File Size : 36. 23 MB
Format : PDF
Download : 710
Read : 818

Get This Book


The Third Edition of FORECASTING AND TIME SERIES illustrates the importance of forecasting and the various statistical techniques that can be used to produce forecasts. Bruce L. Bowerman and Richard T. O'Connell clearly demonstrate the necessity of using forecasts to make intelligent decisions in marketing, finance, personnel management, production scheduling, process control, and strategic management.

Forecasting With Dynamic Regression Models

Author : Alan Pankratz
ISBN : 9781118150788
Genre : Mathematics
File Size : 28. 87 MB
Format : PDF, ePub, Docs
Download : 306
Read : 821

Get This Book


One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.

Introduction To Time Series And Forecasting

Author : Peter J. Brockwell
ISBN : 9783319298542
Genre : Mathematics
File Size : 56. 59 MB
Format : PDF, ePub, Mobi
Download : 150
Read : 583

Get This Book


This book is aimed at the reader who wishes to gain a working knowledge of time series and forecasting methods as applied to economics, engineering and the natural and social sciences. It assumes knowledge only of basic calculus, matrix algebra and elementary statistics. This third edition contains detailed instructions for the use of the professional version of the Windows-based computer package ITSM2000, now available as a free download from the Springer Extras website. The logic and tools of time series model-building are developed in detail. Numerous exercises are included and the software can be used to analyze and forecast data sets of the user's own choosing. The book can also be used in conjunction with other time series packages such as those included in R. The programs in ITSM2000 however are menu-driven and can be used with minimal investment of time in the computational details. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Many additional special topics are also covered. New to this edition: A chapter devoted to Financial Time Series Introductions to Brownian motion, Lévy processes and Itô calculus An expanded section on continuous-time ARMA processes

Sas For Forecasting Time Series

Author : John C. Brocklebank
ISBN : 0471395668
Genre : Mathematics
File Size : 87. 11 MB
Format : PDF, Kindle
Download : 279
Read : 788

Get This Book


Easy-to-read and comprehensive, this book shows how the SAS System performs multivariate time series analysis and features the advanced SAS procedures STATSPACE, ARIMA, and SPECTRA. The interrelationship of SAS/ETS procedures is demonstrated with an accompanying discussion of how the choice of a procedure depends on the data to be analysed and the reults desired. Other topics covered include detecting sinusoidal components in time series models and performing bivariate corr-spectral analysis and comparing the results with the standard transfer function methodology. The authors? unique approach to integrating students in a variety of disciplines and industries. Emphasis is on correct interpretation of output to draw meaningful conclusions. The volume, co-pubished by SAS and JWS, features both theory and practicality, and accompanies a soon-to-be extensive library of SAS hands-on manuals in a multitude of statistical areas. The book can be used with a number of hardware-specific computing machines including CMS, Mac, MVS, Opem VMS Alpha, Opmen VMS VAX, OS/390, OS/2, UNIX, and Windows.

Applied Economic Forecasting Using Time Series Methods

Author : Eric Ghysels
ISBN : 9780190622015
Genre : Business & Economics
File Size : 25. 88 MB
Format : PDF, Mobi
Download : 282
Read : 1041

Get This Book


Economic forecasting is a key ingredient of decision making both in the public and in the private sector. Because economic outcomes are the result of a vast, complex, dynamic and stochastic system, forecasting is very difficult and forecast errors are unavoidable. Because forecast precision and reliability can be enhanced by the use of proper econometric models and methods, this innovative book provides an overview of both theory and applications. Undergraduate and graduate students learning basic and advanced forecasting techniques will be able to build from strong foundations, and researchers in public and private institutions will have access to the most recent tools and insights. Readers will gain from the frequent examples that enhance understanding of how to apply techniques, first by using stylized settings and then by real data applications--focusing on macroeconomic and financial topics. This is first and foremost a book aimed at applying time series methods to solve real-world forecasting problems. Applied Economic Forecasting using Time Series Methods starts with a brief review of basic regression analysis with a focus on specific regression topics relevant for forecasting, such as model specification errors, dynamic models and their predictive properties as well as forecast evaluation and combination. Several chapters cover univariate time series models, vector autoregressive models, cointegration and error correction models, and Bayesian methods for estimating vector autoregressive models. A collection of special topics chapters study Threshold and Smooth Transition Autoregressive (TAR and STAR) models, Markov switching regime models, state space models and the Kalman filter, mixed frequency data models, nowcasting, forecasting using large datasets and, finally, volatility models. There are plenty of practical applications in the book and both EViews and R code are available online.

Introduction To Time Series Analysis And Forecasting

Author : Douglas C. Montgomery
ISBN : 9781118745151
Genre : Mathematics
File Size : 84. 76 MB
Format : PDF, Mobi
Download : 962
Read : 1326

Get This Book


Praise for the First Edition "…[t]he book is great for readers who need to apply the methods and models presented but have little background in mathematics and statistics." -MAA Reviews Thoroughly updated throughout, Introduction to Time Series Analysis and Forecasting, Second Edition presents the underlying theories of time series analysis that are needed to analyze time-oriented data and construct real-world short- to medium-term statistical forecasts. Authored by highly-experienced academics and professionals in engineering statistics, the Second Edition features discussions on both popular and modern time series methodologies as well as an introduction to Bayesian methods in forecasting. Introduction to Time Series Analysis and Forecasting, Second Edition also includes: Over 300 exercises from diverse disciplines including health care, environmental studies, engineering, and finance More than 50 programming algorithms using JMP®, SAS®, and R that illustrate the theory and practicality of forecasting techniques in the context of time-oriented data New material on frequency domain and spatial temporal data analysis Expanded coverage of the variogram and spectrum with applications as well as transfer and intervention model functions A supplementary website featuring PowerPoint® slides, data sets, and select solutions to the problems Introduction to Time Series Analysis and Forecasting, Second Edition is an ideal textbook upper-undergraduate and graduate-levels courses in forecasting and time series. The book is also an excellent reference for practitioners and researchers who need to model and analyze time series data to generate forecasts.

Fundamentals Of Forecasting Using Excel

Author : Kenneth D. Lawrence
ISBN : 083113335X
Genre : Computers
File Size : 62. 48 MB
Format : PDF, ePub, Docs
Download : 725
Read : 1198

Get This Book


Forecasting is an integral part of almost all business enterprises. This book provides readers with the tools to analyze their data, develop forecasting models and present the results in Excel. Progressing from data collection, data presentation, to a step-by-step development of the forecasting techniques, this essential text covers techniques that include but not limited to time series-moving average, exponential smoothing, trending, simple and multiple regression, and Box-Jenkins. And unlike other products of its kind that require either high-priced statistical software or Excel add-ins, this book does not require such software. It can be used both as a primary text and as a supplementary text. Highlights the use of Excel screen shots, data tables, and graphs. Features Full Scale Use of Excel in Forecasting without the Use of Specialized Forecast Packages Includes Excel templates. Emphasizes the practical application of forecasting. Provides coverage of Special Forecasting, including New Product Forecasting, Network Models Forecasting, Links to Input/Output Modeling, and Combination of Forecasting.

Regression Models For Time Series Analysis

Author : Benjamin Kedem
ISBN : 9780471461685
Genre : Mathematics
File Size : 36. 7 MB
Format : PDF, Kindle
Download : 625
Read : 1201

Get This Book


A thorough review of the most current regression methods in time series analysis Regression methods have been an integral part of time series analysis for over a century. Recently, new developments have made major strides in such areas as non-continuous data where a linear model is not appropriate. This book introduces the reader to newer developments and more diverse regression models and methods for time series analysis. Accessible to anyone who is familiar with the basic modern concepts of statistical inference, Regression Models for Time Series Analysis provides a much-needed examination of recent statistical developments. Primary among them is the important class of models known as generalized linear models (GLM) which provides, under some conditions, a unified regression theory suitable for continuous, categorical, and count data. The authors extend GLM methodology systematically to time series where the primary and covariate data are both random and stochastically dependent. They introduce readers to various regression models developed during the last thirty years or so and summarize classical and more recent results concerning state space models. To conclude, they present a Bayesian approach to prediction and interpolation in spatial data adapted to time series that may be short and/or observed irregularly. Real data applications and further results are presented throughout by means of chapter problems and complements. Notably, the book covers: * Important recent developments in Kalman filtering, dynamic GLMs, and state-space modeling * Associated computational issues such as Markov chain, Monte Carlo, and the EM-algorithm * Prediction and interpolation * Stationary processes

Applied Regression Analysis

Author : Terry E. Dielman
ISBN : 053446548X
Genre : Mathematics
File Size : 85. 13 MB
Format : PDF, ePub, Docs
Download : 600
Read : 308

Get This Book


APPLIED REGRESSION ANALYSIS applies regression to real data and examples while employing commercial statistical and spreadsheet software. Covering the core regression topics as well as optional topics including ANOVA, Time Series Forecasting, and Discriminant Analysis, the text emphasizes the importance of understanding the assumptions of the regression model, knowing how to validate a selected model for these assumptions, knowing when and how regression might be useful in a business setting, and understanding and interpreting output from statistical packages and spreadsheets.

Top Download:

Best Books