# foundations of hyperbolic manifolds graduate texts in mathematics

**Download Book Foundations Of Hyperbolic Manifolds Graduate Texts In Mathematics in PDF format. You can Read Online Foundations Of Hyperbolic Manifolds Graduate Texts In Mathematics here in PDF, EPUB, Mobi or Docx formats.**

## Foundations Of Hyperbolic Manifolds

**Author :**John Ratcliffe

**ISBN :**9781475740134

**Genre :**Mathematics

**File Size :**36. 5 MB

**Format :**PDF, Kindle

**Download :**541

**Read :**777

This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.

## The Arithmetic Of Hyperbolic 3 Manifolds

**Author :**Colin Maclachlan

**ISBN :**9781475767209

**Genre :**Mathematics

**File Size :**81. 19 MB

**Format :**PDF, ePub, Mobi

**Download :**726

**Read :**668

Recently there has been considerable interest in developing techniques based on number theory to attack problems of 3-manifolds; Contains many examples and lots of problems; Brings together much of the existing literature of Kleinian groups in a clear and concise way; At present no such text exists

## Outer Circles

**Author :**A. Marden

**ISBN :**9781139463768

**Genre :**Mathematics

**File Size :**24. 10 MB

**Format :**PDF, Mobi

**Download :**489

**Read :**654

We live in a three-dimensional space; what sort of space is it? Can we build it from simple geometric objects? The answers to such questions have been found in the last 30 years, and Outer Circles describes the basic mathematics needed for those answers as well as making clear the grand design of the subject of hyperbolic manifolds as a whole. The purpose of Outer Circles is to provide an account of the contemporary theory, accessible to those with minimal formal background in topology, hyperbolic geometry, and complex analysis. The text explains what is needed, and provides the expertise to use the primary tools to arrive at a thorough understanding of the big picture. This picture is further filled out by numerous exercises and expositions at the ends of the chapters and is complemented by a profusion of high quality illustrations. There is an extensive bibliography for further study.

## Foundations Of Differentiable Manifolds And Lie Groups

**Author :**Frank W. Warner

**ISBN :**9781475717990

**Genre :**Mathematics

**File Size :**39. 75 MB

**Format :**PDF, Kindle

**Download :**553

**Read :**483

Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.

## Fundamentals Of Hyperbolic Manifolds

**Author :**R. D. Canary

**ISBN :**113944719X

**Genre :**Mathematics

**File Size :**51. 90 MB

**Format :**PDF, Kindle

**Download :**148

**Read :**296

Presents reissued articles from two classic sources on hyperbolic manifolds. Part I is an exposition of Chapters 8 and 9 of Thurston's pioneering Princeton Notes; there is a new introduction describing recent advances, with an up-to-date bibliography, giving a contemporary context in which the work can be set. Part II expounds the theory of convex hull boundaries and their bending laminations. A new appendix describes recent work. Part III is Thurston's famous paper that presents the notion of earthquakes in hyperbolic geometry and proves the earthquake theorem. The final part introduces the theory of measures on the limit set, drawing attention to related ergodic theory and the exponent of convergence. The book will be welcomed by graduate students and professional mathematicians who want a rigorous introduction to some basic tools essential for the modern theory of hyperbolic manifolds.

## The Geometry And Topology Of Coxeter Groups Lms 32

**Author :**Michael W. Davis

**ISBN :**9781400845941

**Genre :**Mathematics

**File Size :**21. 8 MB

**Format :**PDF, Docs

**Download :**925

**Read :**726

The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.

## Fundamentals Of Hyperbolic Manifolds

**Author :**R. D. Canary

**ISBN :**9780521615587

**Genre :**Mathematics

**File Size :**61. 34 MB

**Format :**PDF, ePub, Mobi

**Download :**502

**Read :**417

Presents reissued articles from two classic sources on hyperbolic manifolds. Part I is an exposition of Chapters 8 and 9 of Thurston's pioneering Princeton Notes; there is a new introduction describing recent advances, with an up-to-date bibliography, giving a contemporary context in which the work can be set. Part II expounds the theory of convex hull boundaries and their bending laminations. A new appendix describes recent work. Part III is Thurston's famous paper that presents the notion of earthquakes in hyperbolic geometry and proves the earthquake theorem. The final part introduces the theory of measures on the limit set, drawing attention to related ergodic theory and the exponent of convergence. The book will be welcomed by graduate students and professional mathematicians who want a rigorous introduction to some basic tools essential for the modern theory of hyperbolic manifolds.

## Lectures On Hyperbolic Geometry

**Author :**Riccardo Benedetti

**ISBN :**9783642581588

**Genre :**Mathematics

**File Size :**81. 11 MB

**Format :**PDF, ePub

**Download :**585

**Read :**901

Focussing on the geometry of hyperbolic manifolds, the aim here is to provide an exposition of some fundamental results, while being as self-contained, complete, detailed and unified as possible. Following some classical material on the hyperbolic space and the Teichmüller space, the book centers on the two fundamental results: Mostow's rigidity theorem (including a complete proof, following Gromov and Thurston) and Margulis' lemma. These then form the basis for studying Chabauty and geometric topology; a unified exposition is given of Wang's theorem and the Jorgensen-Thurston theory; and much space is devoted to the 3D case: a complete and elementary proof of the hyperbolic surgery theorem, based on the representation of three manifolds as glued ideal tetrahedra.

## Indra S Pearls

**Author :**David Mumford

**ISBN :**0521352533

**Genre :**Mathematics

**File Size :**89. 12 MB

**Format :**PDF, Mobi

**Download :**405

**Read :**814

Highly illustrated realization of infinitely reflected images related to fractals, chaos and symmetry.

## An Introduction To Ergodic Theory

**Author :**Peter Walters

**ISBN :**0387951520

**Genre :**Mathematics

**File Size :**63. 11 MB

**Format :**PDF, Docs

**Download :**726

**Read :**810

This text provides an introduction to ergodic theory suitable for readers knowing basic measure theory. The mathematical prerequisites are summarized in Chapter 0. It is hoped the reader will be ready to tackle research papers after reading the book. The first part of the text is concerned with measure-preserving transformations of probability spaces; recurrence properties, mixing properties, the Birkhoff ergodic theorem, isomorphism and spectral isomorphism, and entropy theory are discussed. Some examples are described and are studied in detail when new properties are presented. The second part of the text focuses on the ergodic theory of continuous transformations of compact metrizable spaces. The family of invariant probability measures for such a transformation is studied and related to properties of the transformation such as topological traitivity, minimality, the size of the non-wandering set, and existence of periodic points. Topological entropy is introduced and related to measure-theoretic entropy. Topological pressure and equilibrium states are discussed, and a proof is given of the variational principle that relates pressure to measure-theoretic entropies. Several examples are studied in detail. The final chapter outlines significant results and some applications of ergodic theory to other branches of mathematics.