# foundations of set theory studies in logic and the foundations of mathematics

**Download Book Foundations Of Set Theory Studies In Logic And The Foundations Of Mathematics in PDF format. You can Read Online Foundations Of Set Theory Studies In Logic And The Foundations Of Mathematics here in PDF, EPUB, Mobi or Docx formats.**

## The Foundations Of Mathematics

**Author :**Kenneth Kunen

**ISBN :**1904987141

**Genre :**Mathematics

**File Size :**37. 14 MB

**Format :**PDF, ePub

**Download :**954

**Read :**873

Mathematical logic grew out of philosophical questions regarding the foundations of mathematics, but logic has now outgrown its philosophical roots, and has become an integral part of mathematics in general. This book is designed for students who plan to specialize in logic, as well as for those who are interested in the applications of logic to other areas of mathematics. Used as a text, it could form the basis of a beginning graduate-level course. There are three main chapters: Set Theory, Model Theory, and Recursion Theory. The Set Theory chapter describes the set-theoretic foundations of all of mathematics, based on the ZFC axioms. It also covers technical results about the Axiom of Choice, well-orderings, and the theory of uncountable cardinals. The Model Theory chapter discusses predicate logic and formal proofs, and covers the Completeness, Compactness, and Lowenheim-Skolem Theorems, elementary submodels, model completeness, and applications to algebra. This chapter also continues the foundational issues begun in the set theory chapter. Mathematics can now be viewed as formal proofs from ZFC. Also, model theory leads to models of set theory. This includes a discussion of absoluteness, and an analysis of models such as H( ) and R( ). The Recursion Theory chapter develops some basic facts about computable functions, and uses them to prove a number of results of foundational importance; in particular, Church's theorem on the undecidability of logical consequence, the incompleteness theorems of Godel, and Tarski's theorem on the non-definability of truth.

## Set Theory

**Author :**Kenneth Kunen

**ISBN :**1848900503

**Genre :**Mathematics

**File Size :**45. 12 MB

**Format :**PDF, ePub, Docs

**Download :**796

**Read :**1123

This book is designed for readers who know elementary mathematical logic and axiomatic set theory, and who want to learn more about set theory. The primary focus of the book is on the independence proofs. Most famous among these is the independence of the Continuum Hypothesis (CH); that is, there are models of the axioms of set theory (ZFC) in which CH is true, and other models in which CH is false. More generally, cardinal exponentiation on the regular cardinals can consistently be anything not contradicting the classical theorems of Cantor and Konig. The basic methods for the independence proofs are the notion of constructibility, introduced by Godel, and the method of forcing, introduced by Cohen. This book describes these methods in detail, verifi es the basic independence results for cardinal exponentiation, and also applies these methods to prove the independence of various mathematical questions in measure theory and general topology. Before the chapters on forcing, there is a fairly long chapter on "infi nitary combinatorics." This consists of just mathematical theorems (not independence results), but it stresses the areas of mathematics where set-theoretic topics (such as cardinal arithmetic) are relevant. There is, in fact, an interplay between infi nitary combinatorics and independence proofs. Infi nitary combinatorics suggests many set-theoretic questions that turn out to be independent of ZFC, but it also provides the basic tools used in forcing arguments. In particular, Martin's Axiom, which is one of the topics under infi nitary combinatorics, introduces many of the basic ingredients of forcing.

## Handbook Of Mathematical Logic

**Author :**J. Barwise

**ISBN :**0080933645

**Genre :**Mathematics

**File Size :**46. 45 MB

**Format :**PDF, ePub, Mobi

**Download :**849

**Read :**508

The handbook is divided into four parts: model theory, set theory, recursion theory and proof theory. Each of the four parts begins with a short guide to the chapters that follow. Each chapter is written for non-specialists in the field in question. Mathematicians will find that this book provides them with a unique opportunity to apprise themselves of developments in areas other than their own.

## Undecidable Theories

**Author :**Alfred Tarski

**ISBN :**9780444533784

**Genre :**Decidability (Mathematical logic)

**File Size :**83. 70 MB

**Format :**PDF, Docs

**Download :**819

**Read :**487

## Handbook Of Proof Theory

**Author :**S.R. Buss

**ISBN :**0080533183

**Genre :**Mathematics

**File Size :**61. 5 MB

**Format :**PDF, ePub

**Download :**205

**Read :**588

This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth. The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.

## Equivalents Of The Axiom Of Choice Ii

**Author :**H. Rubin

**ISBN :**0080887651

**Genre :**Mathematics

**File Size :**74. 47 MB

**Format :**PDF, ePub, Docs

**Download :**772

**Read :**983

This monograph contains a selection of over 250 propositions which are equivalent to AC. The first part on set forms has sections on the well-ordering theorem, variants of AC, the law of the trichotomy, maximal principles, statements related to the axiom of foundation, forms from algebra, cardinal number theory, and a final section of forms from topology, analysis and logic. The second part deals with the axiom of choice for classes - well-ordering theorem, choice and maximal principles.

## Categorical Logic And Type Theory

**Author :**Bart Jacobs

**ISBN :**0444508538

**Genre :**Mathematics

**File Size :**89. 12 MB

**Format :**PDF

**Download :**726

**Read :**978

This book is an attempt to give a systematic presentation of both logic and type theory from a categorical perspective, using the unifying concept of fibred category. Its intended audience consists of logicians, type theorists, category theorists and (theoretical) computer scientists.

## Descriptive Set Theory

**Author :**Yiannis N. Moschovakis

**ISBN :**9780821848135

**Genre :**Mathematics

**File Size :**44. 40 MB

**Format :**PDF, ePub, Docs

**Download :**925

**Read :**171

Descriptive Set Theory is the study of sets in separable, complete metric spaces that can be defined (or constructed), and so can be expected to have special properties not enjoyed by arbitrary pointsets. This subject was started by the French analysts at the turn of the 20th century, most prominently Lebesgue, and, initially, was concerned primarily with establishing regularity properties of Borel and Lebesgue measurable functions, and analytic, coanalytic, and projective sets. Its rapid development came to a halt in the late 1930s, primarily because it bumped against problems which were independent of classical axiomatic set theory. The field became very active again in the 1960s, with the introduction of strong set-theoretic hypotheses and methods from logic (especially recursion theory), which revolutionized it. This monograph develops Descriptive Set Theory systematically, from its classical roots to the modern ``effective'' theory and the consequences of strong (especially determinacy) hypotheses. The book emphasizes the foundations of the subject, and it sets the stage for the dramatic results (established since the 1980s) relating large cardinals and determinacy or allowing applications of Descriptive Set Theory to classical mathematics. The book includes all the necessary background from (advanced) set theory, logic and recursion theory.

## Classical Recursion Theory

**Author :**P. Odifreddi

**ISBN :**0080886590

**Genre :**Computers

**File Size :**38. 34 MB

**Format :**PDF

**Download :**686

**Read :**1074

1988 marked the first centenary of Recursion Theory, since Dedekind's 1888 paper on the nature of number. Now available in paperback, this book is both a comprehensive reference for the subject and a textbook starting from first principles. Among the subjects covered are: various equivalent approaches to effective computability and their relations with computers and programming languages; a discussion of Church's thesis; a modern solution to Post's problem; global properties of Turing degrees; and a complete algebraic characterization of many-one degrees. Included are a number of applications to logic (in particular Gödel's theorems) and to computer science, for which Recursion Theory provides the theoretical foundation.

## Combinatorial Set Theory

**Author :**Lorenz J. Halbeisen

**ISBN :**1447121732

**Genre :**Mathematics

**File Size :**44. 40 MB

**Format :**PDF, Kindle

**Download :**325

**Read :**519

This book provides a self-contained introduction to modern set theory and also opens up some more advanced areas of current research in this field. The first part offers an overview of classical set theory wherein the focus lies on the axiom of choice and Ramsey theory. In the second part, the sophisticated technique of forcing, originally developed by Paul Cohen, is explained in great detail. With this technique, one can show that certain statements, like the continuum hypothesis, are neither provable nor disprovable from the axioms of set theory. In the last part, some topics of classical set theory are revisited and further developed in the light of forcing. The notes at the end of each chapter put the results in a historical context, and the numerous related results and the extensive list of references lead the reader to the frontier of research. This book will appeal to all mathematicians interested in the foundations of mathematics, but will be of particular use to graduates in this field.