graphics for statistics and data analysis with r chapman hall crc texts in statistical science

Download Book Graphics For Statistics And Data Analysis With R Chapman Hall Crc Texts In Statistical Science in PDF format. You can Read Online Graphics For Statistics And Data Analysis With R Chapman Hall Crc Texts In Statistical Science here in PDF, EPUB, Mobi or Docx formats.

Graphics For Statistics And Data Analysis With R

Author : Kevin J Keen
ISBN : 9781584880875
Genre : Mathematics
File Size : 58. 34 MB
Format : PDF
Download : 802
Read : 321

Get This Book


Graphics for Statistics and Data Analysis with R presents the basic principles of sound graphical design and applies these principles to engaging examples using the graphical functions available in R. It offers a wide array of graphical displays for the presentation of data, including modern tools for data visualization and representation. The book considers graphical displays of a single discrete variable, a single continuous variable, and then two or more of each of these. It includes displays and the R code for producing the displays for the dot chart, bar chart, pictographs, stemplot, boxplot, and variations on the quantile-quantile plot. The author discusses nonparametric and parametric density estimation, diagnostic plots for the simple linear regression model, polynomial regression, and locally weighted polynomial regression for producing a smooth curve through data on a scatterplot. The last chapter illustrates visualizing multivariate data with examples using Trellis graphics. Showing how to use graphics to display or summarize data, this text provides best practice guidelines for producing and choosing among graphical displays. It also covers the most effective graphing functions in R. R code is available for download on the book’s website.

Introduction To The Theory Of Statistical Inference

Author : Hannelore Liero
ISBN : 9781466503205
Genre : Mathematics
File Size : 52. 98 MB
Format : PDF, ePub, Mobi
Download : 949
Read : 830

Get This Book


Based on the authors’ lecture notes, Introduction to the Theory of Statistical Inference presents concise yet complete coverage of statistical inference theory, focusing on the fundamental classical principles. Suitable for a second-semester undergraduate course on statistical inference, the book offers proofs to support the mathematics. It illustrates core concepts using cartoons and provides solutions to all examples and problems. Highlights Basic notations and ideas of statistical inference are explained in a mathematically rigorous, but understandable, form Classroom-tested and designed for students of mathematical statistics Examples, applications of the general theory to special cases, exercises, and figures provide a deeper insight into the material Solutions provided for problems formulated at the end of each chapter Combines the theoretical basis of statistical inference with a useful applied toolbox that includes linear models Theoretical, difficult, or frequently misunderstood problems are marked The book is aimed at advanced undergraduate students, graduate students in mathematics and statistics, and theoretically-interested students from other disciplines. Results are presented as theorems and corollaries. All theorems are proven and important statements are formulated as guidelines in prose. With its multipronged and student-tested approach, this book is an excellent introduction to the theory of statistical inference.

Nonparametric Methods In Statistics With Sas Applications

Author : Olga Korosteleva
ISBN : 9781466580633
Genre : Mathematics
File Size : 26. 51 MB
Format : PDF
Download : 922
Read : 1220

Get This Book


Designed for a graduate course in applied statistics, Nonparametric Methods in Statistics with SAS Applications teaches students how to apply nonparametric techniques to statistical data. It starts with the tests of hypotheses and moves on to regression modeling, time-to-event analysis, density estimation, and resampling methods. The text begins with classical nonparametric hypotheses testing, including the sign, Wilcoxon sign-rank and rank-sum, Ansari-Bradley, Kolmogorov-Smirnov, Friedman rank, Kruskal-Wallis H, Spearman rank correlation coefficient, and Fisher exact tests. It then discusses smoothing techniques (loess and thin-plate splines) for classical nonparametric regression as well as binary logistic and Poisson models. The author also describes time-to-event nonparametric estimation methods, such as the Kaplan-Meier survival curve and Cox proportional hazards model, and presents histogram and kernel density estimation methods. The book concludes with the basics of jackknife and bootstrap interval estimation. Drawing on data sets from the author’s many consulting projects, this classroom-tested book includes various examples from psychology, education, clinical trials, and other areas. It also presents a set of exercises at the end of each chapter. All examples and exercises require the use of SAS 9.3 software. Complete SAS codes for all examples are given in the text. Large data sets for the exercises are available on the author’s website.

Linear Models With R

Author : Julian J. Faraway
ISBN : 9781439887349
Genre : Mathematics
File Size : 27. 65 MB
Format : PDF, ePub, Mobi
Download : 774
Read : 209

Get This Book


A Hands-On Way to Learning Data Analysis Part of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition. New to the Second Edition Reorganized material on interpreting linear models, which distinguishes the main applications of prediction and explanation and introduces elementary notions of causality Additional topics, including QR decomposition, splines, additive models, Lasso, multiple imputation, and false discovery rates Extensive use of the ggplot2 graphics package in addition to base graphics Like its widely praised, best-selling predecessor, this edition combines statistics and R to seamlessly give a coherent exposition of the practice of linear modeling. The text offers up-to-date insight on essential data analysis topics, from estimation, inference, and prediction to missing data, factorial models, and block designs. Numerous examples illustrate how to apply the different methods using R.

Modeling Techniques In Predictive Analytics With Python And R

Author : Thomas W. Miller
ISBN : 9780133892147
Genre : Computers
File Size : 33. 36 MB
Format : PDF, ePub, Mobi
Download : 528
Read : 1316

Get This Book


Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more

Annales Zoologici Fennici

Author :
ISBN : UCSD:31822009528795
Genre : Animals
File Size : 64. 66 MB
Format : PDF, Mobi
Download : 764
Read : 760

Get This Book



Statistics And Analysis Of Scientific Data

Author : Massimiliano Bonamente
ISBN : 9781461479840
Genre : Science
File Size : 49. 9 MB
Format : PDF, Docs
Download : 534
Read : 583

Get This Book


Statistics and Analysis of Scientific Data covers the foundations of probability theory and statistics, and a number of numerical and analytical methods that are essential for the present-day analyst of scientific data. Topics covered include probability theory, distribution functions of statistics, fits to two-dimensional datasheets and parameter estimation, Monte Carlo methods and Markov chains. Equal attention is paid to the theory and its practical application, and results from classic experiments in various fields are used to illustrate the importance of statistics in the analysis of scientific data. The main pedagogical method is a theory-then-application approach, where emphasis is placed first on a sound understanding of the underlying theory of a topic, which becomes the basis for an efficient and proactive use of the material for practical applications. The level is appropriate for undergraduates and beginning graduate students, and as a reference for the experienced researcher. Basic calculus is used in some of the derivations, and no previous background in probability and statistics is required. The book includes many numerical tables of data, as well as exercises and examples to aid the students' understanding of the topic.

The British National Bibliography

Author : Arthur James Wells
ISBN : UOM:39015066099238
Genre : English literature
File Size : 46. 29 MB
Format : PDF, ePub
Download : 400
Read : 952

Get This Book



Web And Network Data Science

Author : Thomas W. Miller
ISBN : 9780133887648
Genre : Computers
File Size : 54. 39 MB
Format : PDF, ePub, Docs
Download : 318
Read : 246

Get This Book


Master modern web and network data modeling: both theory and applications. In Web and Network Data Science, a top faculty member of Northwestern University’s prestigious analytics program presents the first fully-integrated treatment of both the business and academic elements of web and network modeling for predictive analytics. Some books in this field focus either entirely on business issues (e.g., Google Analytics and SEO); others are strictly academic (covering topics such as sociology, complexity theory, ecology, applied physics, and economics). This text gives today's managers and students what they really need: integrated coverage of concepts, principles, and theory in the context of real-world applications. Building on his pioneering Web Analytics course at Northwestern University, Thomas W. Miller covers usability testing, Web site performance, usage analysis, social media platforms, search engine optimization (SEO), and many other topics. He balances this practical coverage with accessible and up-to-date introductions to both social network analysis and network science, demonstrating how these disciplines can be used to solve real business problems.

Reproducible Research With R And R Studio

Author : Christopher Gandrud
ISBN : 9781466572843
Genre : Mathematics
File Size : 70. 42 MB
Format : PDF
Download : 781
Read : 684

Get This Book


Bringing together computational research tools in one accessible source, Reproducible Research with R and RStudio guides you in creating dynamic and highly reproducible research. Suitable for researchers in any quantitative empirical discipline, it presents practical tools for data collection, data analysis, and the presentation of results. With straightforward examples, the book takes you through a reproducible research workflow, showing you how to use: R for dynamic data gathering and automated results presentation knitr for combining statistical analysis and results into one document LaTeX for creating PDF articles and slide shows, and Markdown and HTML for presenting results on the web Cloud storage and versioning services that can store data, code, and presentation files; save previous versions of the files; and make the information widely available Unix-like shell programs for compiling large projects and converting documents from one markup language to another RStudio to tightly integrate reproducible research tools in one place Whether you’re an advanced user or just getting started with tools such as R and LaTeX, this book saves you time searching for information and helps you successfully carry out computational research. It provides a practical reproducible research workflow that you can use to gather and analyze data as well as dynamically present results in print and on the web. Supplementary files used for the examples and a reproducible research project are available on the author’s website.

Top Download:

Best Books