green s functions and linear differential equations theory applications and computation chapman hall crc applied mathematics nonlinear science

Download Book Green S Functions And Linear Differential Equations Theory Applications And Computation Chapman Hall Crc Applied Mathematics Nonlinear Science in PDF format. You can Read Online Green S Functions And Linear Differential Equations Theory Applications And Computation Chapman Hall Crc Applied Mathematics Nonlinear Science here in PDF, EPUB, Mobi or Docx formats.

Green S Functions And Linear Differential Equations

Author : Prem K. Kythe
ISBN : 9781439840092
Genre : Mathematics
File Size : 85. 96 MB
Format : PDF, Kindle
Download : 450
Read : 939

Get This Book


Green’s Functions and Linear Differential Equations: Theory, Applications, and Computation presents a variety of methods to solve linear ordinary differential equations (ODEs) and partial differential equations (PDEs). The text provides a sufficient theoretical basis to understand Green’s function method, which is used to solve initial and boundary value problems involving linear ODEs and PDEs. It also contains a large number of examples and exercises from diverse areas of mathematics, applied science, and engineering. Taking a direct approach, the book first unravels the mystery of the Dirac delta function and then explains its relationship to Green’s functions. The remainder of the text explores the development of Green’s functions and their use in solving linear ODEs and PDEs. The author discusses how to apply various approaches to solve initial and boundary value problems, including classical and general variations of parameters, Wronskian method, Bernoulli’s separation method, integral transform method, method of images, conformal mapping method, and interpolation method. He also covers applications of Green’s functions, including spherical and surface harmonics. Filled with worked examples and exercises, this robust, self-contained text fully explains the differential equation problems, includes graphical representations where necessary, and provides relevant background material. It is mathematically rigorous yet accessible enough for readers to grasp the beauty and power of the subject.

Green S Functions In The Theory Of Ordinary Differential Equations

Author : Alberto Cabada
ISBN : 9781461495062
Genre : Mathematics
File Size : 90. 38 MB
Format : PDF, Kindle
Download : 490
Read : 460

Get This Book


This book provides a complete and exhaustive study of the Green’s functions. Professor Cabada first proves the basic properties of Green's functions and discusses the study of nonlinear boundary value problems. Classic methods of lower and upper solutions are explored, with a particular focus on monotone iterative techniques that flow from them. In addition, Cabada proves the existence of positive solutions by constructing operators defined in cones. The book will be of interest to graduate students and researchers interested in the theoretical underpinnings of boundary value problem solutions.

Introduction To The Calculus Of Variations And Control With Modern Applications

Author : John A. Burns
ISBN : 9781466571396
Genre : Mathematics
File Size : 59. 77 MB
Format : PDF, ePub, Mobi
Download : 817
Read : 866

Get This Book


Introduction to the Calculus of Variations and Control with Modern Applications provides the fundamental background required to develop rigorous necessary conditions that are the starting points for theoretical and numerical approaches to modern variational calculus and control problems. The book also presents some classical sufficient conditions and discusses the importance of distinguishing between the necessary and sufficient conditions. In the first part of the text, the author develops the calculus of variations and provides complete proofs of the main results. He explains how the ideas behind the proofs are essential to the development of modern optimization and control theory. Focusing on optimal control problems, the second part shows how optimal control is a natural extension of the classical calculus of variations to more complex problems. By emphasizing the basic ideas and their mathematical development, this book gives you the foundation to use these mathematical tools to then tackle new problems. The text moves from simple to more complex problems, allowing you to see how the fundamental theory can be modified to address more difficult and advanced challenges. This approach helps you understand how to deal with future problems and applications in a realistic work environment.

An Introduction To Partial Differential Equations With Matlab Second Edition

Author : Matthew P. Coleman
ISBN : 9781439898475
Genre : Mathematics
File Size : 86. 75 MB
Format : PDF, Mobi
Download : 757
Read : 823

Get This Book


An Introduction to Partial Differential Equations with MATLAB®, Second Edition illustrates the usefulness of PDEs through numerous applications and helps students appreciate the beauty of the underlying mathematics. Updated throughout, this second edition of a bestseller shows students how PDEs can model diverse problems, including the flow of heat, the propagation of sound waves, the spread of algae along the ocean’s surface, the fluctuation in the price of a stock option, and the quantum mechanical behavior of a hydrogen atom. Suitable for a two-semester introduction to PDEs and Fourier series for mathematics, physics, and engineering students, the text teaches the equations based on method of solution. It provides both physical and mathematical motivation as much as possible. The author treats problems in one spatial dimension before dealing with those in higher dimensions. He covers PDEs on bounded domains and then on unbounded domains, introducing students to Fourier series early on in the text. Each chapter’s prelude explains what and why material is to be covered and considers the material in a historical setting. The text also contains many exercises, including standard ones and graphical problems using MATLAB. While the book can be used without MATLAB, instructors and students are encouraged to take advantage of MATLAB’s excellent graphics capabilities. The MATLAB code used to generate the tables and figures is available in an appendix and on the author’s website.

Green S Functions With Applications

Author : Dean G. Duffy
ISBN : 9781420034790
Genre : Mathematics
File Size : 60. 54 MB
Format : PDF, ePub, Docs
Download : 500
Read : 519

Get This Book


Since its introduction in 1828, using Green's functions has become a fundamental mathematical technique for solving boundary value problems. Most treatments, however, focus on its theory and classical applications in physics rather than the practical means of finding Green's functions for applications in engineering and the sciences. Green's Functions with Applications systematically presents the various methods of deriving these useful functions. It leads readers through the process of developing Green's functions for ordinary and partial differential equations. In addition to exploring the classical problems involving the wave, heat, and Helmholtz equations, the book includes special sections on leaky modes, water waves, and absolute/convective instability. The author gives special attention to the numerical evaluation of Green's functions. By illustrating many of the functions in the text and problem sets, he helps readers develop an intuition about the behavior of Green's function in certain problems. He also considers the questions of the computational efficiency and possible methods for accelerating the process. With its wealth of examples and problems drawn from the literature, this book provides a treasure-trove of methods to construct and compute Green's functions. It is the most exhaustive source book of Green's functions yet available and the only one designed specifically for engineering and scientific applications.

Geometric Sturmian Theory Of Nonlinear Parabolic Equations And Applications

Author : Victor A. Galaktionov
ISBN : 0203998065
Genre : Mathematics
File Size : 59. 62 MB
Format : PDF, Kindle
Download : 370
Read : 1058

Get This Book


Unlike the classical Sturm theorems on the zeros of solutions of second-order ODEs, Sturm's evolution zero set analysis for parabolic PDEs did not attract much attention in the 19th century, and, in fact, it was lost or forgotten for almost a century. Briefly revived by Pólya in the 1930's and rediscovered in part several times since, it was not until the 1980's that the Sturmian argument for PDEs began to penetrate into the theory of parabolic equations and was found to have several fundamental applications. Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications focuses on geometric aspects of the intersection comparison for nonlinear models creating finite-time singularities. After introducing the original Sturm zero set results for linear parabolic equations and the basic concepts of geometric analysis, the author presents the main concepts and regularity results of the geometric intersection theory (G-theory). Here he considers the general singular equation and presents the geometric notions related to the regularity and interface propagation of solutions. In the general setting, the author describes the main aspects of the ODE-PDE duality, proves existence and nonexistence theorems, establishes uniqueness and optimal Bernstein-type estimates, and derives interface equations, including higher-order equations. The final two chapters explore some special aspects of discontinuous and continuous limit semigroups generated by singular parabolic equations. Much of the information presented here has never before been published in book form. Readable and self-contained, this book forms a unique and outstanding reference on second-order parabolic PDEs used as models for a wide range of physical problems.

Multicomponent And Multiscale Systems

Author : Juergen Geiser
ISBN : 9783319151175
Genre : Mathematics
File Size : 22. 74 MB
Format : PDF, ePub
Download : 780
Read : 579

Get This Book


This book examines the latest research results from combined multi-component and multi-scale explorations. It provides theory, considers underlying numerical methods and presents brilliant computational experimentation. Engineering computations featured in this monograph further offer particular interest to many researchers, engineers and computational scientists working in frontier modeling and applications of multicomponent and multiscale problems. Professor Geiser gives specific attention to the aspects of decomposing and splitting delicate structures and controlling decomposition and the rationale behind many important applications of multi-component and multi-scale analysis. Multicomponent and Multiscale Systems: Theory, Methods and Applications in Engineering also considers the question of why iterative methods can be powerful and more appropriate for well-balanced multiscale and multicomponent coupled nonlinear problems. The book is ideal for engineers and scientists working in theoretical and applied areas.

Fourier Series In Several Variables With Applications To Partial Differential Equations

Author : Victor Shapiro
ISBN : 9781439854280
Genre : Mathematics
File Size : 63. 69 MB
Format : PDF, Mobi
Download : 690
Read : 649

Get This Book


Fourier Series in Several Variables with Applications to Partial Differential Equations illustrates the value of Fourier series methods in solving difficult nonlinear partial differential equations (PDEs). Using these methods, the author presents results for stationary Navier-Stokes equations, nonlinear reaction-diffusion systems, and quasilinear elliptic PDEs and resonance theory. He also establishes the connection between multiple Fourier series and number theory. The book first presents four summability methods used in studying multiple Fourier series: iterated Fejer, Bochner-Riesz, Abel, and Gauss-Weierstrass. It then covers conjugate multiple Fourier series, the analogue of Cantor’s uniqueness theorem in two dimensions, surface spherical harmonics, and Schoenberg’s theorem. After describing five theorems on periodic solutions of nonlinear PDEs, the text concludes with solutions of stationary Navier-Stokes equations. Discussing many results and studies from the literature, this book demonstrates the robust power of Fourier analysis in solving seemingly impenetrable nonlinear problems.

Glimpses Of Soliton Theory

Author : Alex Kasman
ISBN : 9780821852453
Genre : Mathematics
File Size : 68. 23 MB
Format : PDF
Download : 288
Read : 178

Get This Book


Solitons are explicit solutions to nonlinear partial differential equations exhibiting particle-like behavior. This is quite surprising, both mathematically and physically. Waves with these properties were once believed to be impossible by leading mathematical physicists, yet they are now not only accepted as a theoretical possibility but are regularly observed in nature and form the basis of modern fiber-optic communication networks. Glimpses of Soliton Theory addresses some of the hidden mathematical connections in soliton theory which have been revealed over the last half-century. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant and surprisingly simple explanation of something seemingly miraculous. Assuming only multivariable calculus and linear algebra as prerequisites, this book introduces the reader to the KdV Equation and its multisoliton solutions, elliptic curves and Weierstrass -functions, the algebra of differential operators, Lax Pairs and their use in discovering other soliton equations, wedge products and decomposability, the KP Equation and Sato's theory relating the Bilinear KP Equation to the geometry of Grassmannians. Notable features of the book include: careful selection of topics and detailed explanations to make this advanced subject accessible to any undergraduate math major, numerous worked examples and thought-provoking but not overly-difficult exercises, footnotes and lists of suggested readings to guide the interested reader to more information, and use of the software package Mathematica« to facilitate computation and to animate the solutions under study. This book provides the reader with a unique glimpse of the unity of mathematics and could form the basis for a self-study, one-semester special topics, or "capstone" course.

Differential Equations With Maxima

Author : Drumi D. Bainov
ISBN : 9781439867587
Genre : Mathematics
File Size : 73. 89 MB
Format : PDF, ePub, Docs
Download : 386
Read : 1197

Get This Book


Differential equations with "maxima"—differential equations that contain the maximum of the unknown function over a previous interval—adequately model real-world processes whose present state significantly depends on the maximum value of the state on a past time interval. More and more, these equations model and regulate the behavior of various technical systems on which our ever-advancing, high-tech world depends. Understanding and manipulating the theoretical results and investigations of differential equations with maxima opens the door to enormous possibilities for applications to real-world processes and phenomena. Presenting the qualitative theory and approximate methods, Differential Equations with Maxima begins with an introduction to the mathematical apparatus of integral inequalities involving maxima of unknown functions. The authors solve various types of linear and nonlinear integral inequalities, study both cases of single and double integral inequalities, and illustrate several direct applications of solved inequalities. They also present general properties of solutions as well as existence results for initial value and boundary value problems. Later chapters offer stability results with definitions of different types of stability with sufficient conditions and include investigations based on appropriate modifications of the Razumikhin technique by applying Lyapunov functions. The text covers the main concepts of oscillation theory and methods applied to initial and boundary value problems, combining the method of lower and upper solutions with appropriate monotone methods and introducing algorithms for constructing sequences of successive approximations. The book concludes with a systematic development of the averaging method for differential equations with maxima as applied to first-order and neutral equations. It also explores different schemes for averaging, partial averaging, partially additive averaging, and partially multiplicative averaging. A solid overview of the field, this book guides theoretical and applied researchers in mathematics toward further investigations and applications of these equations for a more accurate study of real-world problems.

Top Download:

Best Books