# homological algebra in strongly non abelian settings

**Download Book Homological Algebra In Strongly Non Abelian Settings in PDF format. You can Read Online Homological Algebra In Strongly Non Abelian Settings here in PDF, EPUB, Mobi or Docx formats.**

## Homological Algebra

**Author :**Marco Grandis

**ISBN :**9789814425933

**Genre :**Mathematics

**File Size :**29. 75 MB

**Format :**PDF, Docs

**Download :**806

**Read :**1265

We propose here a study of ‘semiexact’ and ‘homological' categories as a basis for a generalised homological algebra. Our aim is to extend the homological notions to deeply non-abelian situations, where satellites and spectral sequences can still be studied. This is a sequel of a book on ‘Homological Algebra, The interplay of homology with distributive lattices and orthodox semigroups’, published by the same Editor, but can be read independently of the latter. The previous book develops homological algebra in p-exact categories, i.e. exact categories in the sense of Puppe and Mitchell — a moderate generalisation of abelian categories that is nevertheless crucial for a theory of ‘coherence’ and ‘universal models’ of (even abelian) homological algebra. The main motivation of the present, much wider extension is that the exact sequences or spectral sequences produced by unstable homotopy theory cannot be dealt with in the previous framework. According to the present definitions, a semiexact category is a category equipped with an ideal of ‘null’ morphisms and provided with kernels and cokernels with respect to this ideal. A homological category satisfies some further conditions that allow the construction of subquotients and induced morphisms, in particular the homology of a chain complex or the spectral sequence of an exact couple. Extending abelian categories, and also the p-exact ones, these notions include the usual domains of homology and homotopy theories, e.g. the category of ‘pairs’ of topological spaces or groups; they also include their codomains, since the sequences of homotopy ‘objects’ for a pair of pointed spaces or a fibration can be viewed as exact sequences in a homological category, whose objects are actions of groups on pointed sets. Homological Algebra: The Interplay of Homology with Distributive Lattices and Orthodox Semigroups Contents:IntroductionSemiexact categoriesHomological CategoriesSubquotients, Homology and Exact CouplesSatellitesUniversal ConstructionsApplications to Algebraic TopologyHomological Theories and Biuniversal ModelsAppendix A. Some Points of Category Theory Readership: Graduate students, professors and researchers in pure mathematics, in particular category theory and algebraic topology. Keywords:Non Abelian Homological Algebra;Spectral Sequences;Distributive Lattices;Orthodox Semigroups;Categories of RelationsReviews: “The range of applications and examples is considerable and many are outside the reach of more standard forms of homological algebra, but the methods used here also give insight as to 'why' the classical theory works and how its results can be interpreted.” Zentralblatt MATH

## Homological Algebra

**Author :**Marco Grandis

**ISBN :**9789814407069

**Genre :**Mathematics

**File Size :**36. 17 MB

**Format :**PDF, Kindle

**Download :**841

**Read :**1022

In this book we want to explore aspects of coherence in homological algebra, that already appear in the classical situation of abelian groups or abelian categories. Lattices of subobjects are shown to play an important role in the study of homological systems, from simple chain complexes to all the structures that give rise to spectral sequences. A parallel role is played by semigroups of endorelations. These links rest on the fact that many such systems, but not all of them, live in distributive sublattices of the modular lattices of subobjects of the system. The property of distributivity allows one to work with induced morphisms in an automatically consistent way, as we prove in a 'Coherence Theorem for homological algebra'. (On the contrary, a 'non-distributive' homological structure like the bifiltered chain complex can easily lead to inconsistency, if one explores the interaction of its two spectral sequences farther than it is normally done.) The same property of distributivity also permits representations of homological structures by means of sets and lattices of subsets, yielding a precise foundation for the heuristic tool of Zeeman diagrams as universal models of spectral sequences. We thus establish an effective method of working with spectral sequences, called 'crossword chasing', that can often replace the usual complicated algebraic tools and be of much help to readers that want to apply spectral sequences in any field.

## Category Theory And Applications

**Author :**Marco Grandis

**ISBN :**9789813231085

**Genre :**

**File Size :**30. 67 MB

**Format :**PDF

**Download :**863

**Read :**837

Category Theory now permeates most of Mathematics, large parts of theoretical Computer Science and parts of theoretical Physics. Its unifying power brings together different branches, and leads to a deeper understanding of their roots. This book is addressed to students and researchers of these fields and can be used as a text for a first course in Category Theory. It covers its basic tools, like universal properties, limits, adjoint functors and monads. These are presented in a concrete way, starting from examples and exercises taken from elementary Algebra, Lattice Theory and Topology, then developing the theory together with new exercises and applications. Applications of Category Theory form a vast and differentiated domain. This book wants to present the basic applications and a choice of more advanced ones, based on the interests of the author. References are given for applications in many other fields. Contents: Introduction Categories, Functors and Natural Transformations Limits and Colimits Adjunctions and Monads Applications in Algebra Applications in Topology and Algebraic Topology Applications in Homological Algebra Hints at Higher Dimensional Category Theory References Indices Readership: Graduate students and researchers of mathematics, computer science, physics. Keywords: Category TheoryReview: Key Features: The main notions of Category Theory are presented in a concrete way, starting from examples taken from the elementary part of well-known disciplines: Algebra, Lattice Theory and Topology The theory is developed presenting other examples and some 300 exercises; the latter are endowed with a solution, or a partial solution, or adequate hints Three chapters and some extra sections are devoted to applications

## Introduction To Commutative Algebra And Algebraic Geometry

**Author :**Ernst Kunz

**ISBN :**0817630651

**Genre :**Mathematics

**File Size :**87. 85 MB

**Format :**PDF, ePub

**Download :**643

**Read :**1321

## Undergraduate Commutative Algebra

**Author :**Miles Reid

**ISBN :**0521458897

**Genre :**Mathematics

**File Size :**40. 75 MB

**Format :**PDF, ePub, Mobi

**Download :**287

**Read :**339

In this well-written introduction to commutative algebra, the author shows the link between commutative ring theory and algebraic geometry. In addition to standard material, the book contrasts the methods and ideology of modern abstract algebra with concrete applications in algebraic geometry and number theory. Professor Reid begins with a discussion of modules and Noetherian rings before moving on to finite extensions and the Noether normalization. Sections on the nullstellensatz and rings of fractions precede sections on primary decomposition and normal integral domains. This book is ideal for anyone seeking a primer on commutative algebra.

## A Course In Commutative Algebra

**Author :**Gregor Kemper

**ISBN :**3642035450

**Genre :**Mathematics

**File Size :**67. 68 MB

**Format :**PDF, Mobi

**Download :**724

**Read :**746

This textbook offers a thorough, modern introduction into commutative algebra. It is intented mainly to serve as a guide for a course of one or two semesters, or for self-study. The carefully selected subject matter concentrates on the concepts and results at the center of the field. The book maintains a constant view on the natural geometric context, enabling the reader to gain a deeper understanding of the material. Although it emphasizes theory, three chapters are devoted to computational aspects. Many illustrative examples and exercises enrich the text.

## A Singular Introduction To Commutative Algebra

**Author :**Gert-Martin Greuel

**ISBN :**9783540735427

**Genre :**Mathematics

**File Size :**80. 84 MB

**Format :**PDF, Docs

**Download :**998

**Read :**843

This substantially enlarged second edition aims to lead a further stage in the computational revolution in commutative algebra. This is the first handbook/tutorial to extensively deal with SINGULAR. Among the book’s most distinctive features is a new, completely unified treatment of the global and local theories. Another feature of the book is its breadth of coverage of theoretical topics in the portions of commutative algebra closest to algebraic geometry, with algorithmic treatments of almost every topic.

## Strong Limit Theorems In Non Commutative Probability

**Author :**R. Jajte

**ISBN :**9783540391395

**Genre :**Mathematics

**File Size :**85. 18 MB

**Format :**PDF, Docs

**Download :**356

**Read :**366

## Set Theoretic Methods In Homological Algebra And Abelian Groups

**Author :**Paul C. Eklof

**ISBN :**UOM:39015017308928

**Genre :**Abelian groups

**File Size :**35. 89 MB

**Format :**PDF, Kindle

**Download :**825

**Read :**1147

## A Non Hausdorff Completion

**Author :**Saul Lubkin

**ISBN :**9789814667401

**Genre :**Mathematics

**File Size :**23. 47 MB

**Format :**PDF, Docs

**Download :**121

**Read :**179

This book introduces entirely new invariants never considered before, in homological algebra and commutative (and even non-commutative) algebra. The C-completion C(M), and higher C-completions, Cn(M), are defined for an arbitrary left module M over a topological ring A. Spectral sequences are defined that use these invariants. Given a left module over a topological ring A, under mild conditions the usual Hausdorff completion: M^ can be recovered from the C-completion C(M), by taking the quotient module by the closure of {0}. The new invariants and tools in this book are expected to be used in the study of p-adic cohomology in algebraic geometry; and also in the study of p-adic Banach spaces — by replacing the cumbersome "complete tensor product" of p-adic Banach spaces, with the more sophisticated "C-complete tensor product", discussed in this book. It is also not unlikely that the further study of these new invariants may well develop into a new branch of abstract mathematics - connected with commutative algebra, homological algebra, and algebraic topology.