jmp for basic univariate and multivariate statistics methods for researchers and social scientists second edition

Download Book Jmp For Basic Univariate And Multivariate Statistics Methods For Researchers And Social Scientists Second Edition in PDF format. You can Read Online Jmp For Basic Univariate And Multivariate Statistics Methods For Researchers And Social Scientists Second Edition here in PDF, EPUB, Mobi or Docx formats.

Jmp For Basic Univariate And Multivariate Statistics

Author : Ann Lehman
ISBN : 9781612906034
Genre : Computers
File Size : 72. 29 MB
Format : PDF, ePub, Docs
Download : 249
Read : 568

Get This Book


Learn how to manage JMP data and perform the statistical analyses most commonly used in research in the social sciences and other fields with JMP for Basic Univariate and Multivariate Statistics: Methods for Researchers and Social Scientists, Second Edition. Updated for JMP 10 and including new features on the statistical platforms, this book offers clearly written instructions to guide you through the basic concepts of research and data analysis, enabling you to easily perform statistical analyses and solve problems in real-world research. Step by step, you'll discover how to obtain descriptive and inferential statistics, summarize results clearly in a way that is suitable for publication, perform a wide range of JMP analyses, interpret the results, and more. Topics include screening data for errors selecting subsets computing the coefficient alpha reliability index (Cronbach's alpha) for a multiple-item scale performing bivariate analyses for all types of variables performing a one-way analysis of variance (ANOVA), multiple regression, and a one-way multivariate analysis of variance (MANOVA) Advanced topics include analyzing models with interactions and repeated measures. There is also comprehensive coverage of principle components with emphasis on graphical interpretation. This user-friendly book introduces researchers and students of the social sciences to JMP and to elementary statistical procedures, while the more advanced statistical procedures that are presented make it an invaluable reference guide for experienced researchers as well.

A Step By Step Approach To Using Sas For Univariate Multivariate Statistics

Author : Norm O'Rourke
ISBN : 9781590474174
Genre : Computers
File Size : 60. 37 MB
Format : PDF, ePub
Download : 796
Read : 960

Get This Book


Providing practice data inspired by actual studies, this book explains how to choose the right statistic, understand the assumptions underlying the procedure, prepare an SAS program for an analysis, interpret the output, and summarize the analysis and results according to the format prescribed in the Publication Manual of the American Psychological Association.

Jmp Start Statistics

Author : John Sall
ISBN : 9781629608761
Genre : Computers
File Size : 90. 40 MB
Format : PDF
Download : 813
Read : 1037

Get This Book


This book provides hands-on tutorials with just the right amount of conceptual and motivational material to illustrate how to use the intuitive interface for data analysis in JMP. Each chapter features concept-specific tutorials, examples, brief reviews of concepts, step-by-step illustrations, and exercises. Updated for JMP 13, JMP Start Statistics, Sixth Edition includes many new features, including: The redesigned Formula Editor. New and improved ways to create formulas in JMP directly from the data table or dialogs. Interface updates, including improved menu layout. Updates and enhancements in many analysis platforms. New ways to get data into JMP and to save and share JMP results. Many new features that make it easier to use JMP.

Fitting Linear Models

Author : A. McIntosh
ISBN : 9781461257523
Genre : Mathematics
File Size : 31. 26 MB
Format : PDF, Mobi
Download : 430
Read : 815

Get This Book


The increasing power and decreasing price of smalI computers, especialIy "personal" computers, has made them increasingly popular in statistical analysis. The day may not be too far off when every statistician has on his or her desktop computing power on a par with the large mainframe computers of 15 or 20 years ago. These same factors make it relatively easy to acquire and manipulate large quantities of data, and statisticians can expect a corresponding increase in the size of the datasets that they must analyze. Unfortunately, because of constraints imposed by architecture, size or price, these smalI computers do not possess the main memory of their large cousins. Thus, there is a growing need for algorithms that are sufficiently economical of space to permit statistical analysis on smalI computers. One area of analysis where there is a need for algorithms that are economical of space is in the fitting of linear models.

Advanced Statistics In Research

Author : Larry Hatcher
ISBN : 0985867000
Genre : Mathematical statistics
File Size : 63. 97 MB
Format : PDF
Download : 166
Read : 1153

Get This Book


"Advanced Statistics in Research: Reading, Understanding, and Writing Up Data Analysis Results" is the simple, nontechnical introduction to the most complex multivariate statistics presented in empirical research articles. "wwwStatsInResearch.com, " is a companion website that provides free sample chapters, exercises, and PowerPoint slides for students and teachers. A free 600-item test bank is available to instructors. "Advanced Statistics in Research" does not show how to "perform" statistical procedures--it shows how to read, understand, and interpret them, as they are typically presented in journal articles and research reports. It demystifies the sophisticated statistics that stop most readers cold: multiple regression, logistic regression, discriminant analysis, ANOVA, ANCOVA, MANOVA, factor analysis, path analysis, structural equation modeling, meta-analysis--and more. "Advanced Statistics in Research" assumes that you have never had a course in statistics. It begins at the beginning, with research design, central tendency, variability, z scores, and the normal curve. You will learn (or re-learn) the big-three results that are common to most procedures: statistical significance, confidence intervals, and effect size. Step-by-step, each chapter gently builds on earlier concepts. Matrix algebra is avoided, and complex topics are explained using simple, easy-to-understand examples. "Need help writing up your results?" Advanced Statistics in Research shows how data-analysis results can be summarized in text, tables, and figures according to APA format. You will see how to present the basics (e.g., means and standard deviations) as well as the advanced (e.g., factor patterns, post-hoc tests, path models, and more). "Advanced Statistics in Research" is appropriate as a textbook for graduate students and upper-level undergraduates (see supplementary materials at StatsInResearch.com). It also serves as a handy shelf reference for investigators and all consumers of research.

The Little Sas Book

Author : Lora D. Delwiche
ISBN : 9781612904009
Genre : Computers
File Size : 81. 45 MB
Format : PDF, ePub, Docs
Download : 989
Read : 880

Get This Book


A classic that just keeps getting better, The Little SAS Book is essential for anyone learning SAS programming. Lora Delwiche and Susan Slaughter offer a user-friendly approach so readers can quickly and easily learn the most commonly used features of the SAS language. Each topic is presented in a self-contained two-page layout complete with examples and graphics. The fifth edition has been completely updated to reflect the new default output introduced with SAS 9.3. In addition, there is a now a full chapter devoted to ODS Graphics including the SGPLOT and SGPANEL procedures. Other changes include expanded coverage of linguistic sorting and a new section on concatenating macro variables with other text. This book is a great tool for users of SAS 9.4 as well. This title belongs on every SAS programmer's bookshelf. It's a resource not just to get you started, but one you'll return to as you continue to improve your programming skills. This book is part of the SAS Press program.

Fundamentals Of Predictive Analytics With Jmp Second Edition

Author : Ron Klimberg
ISBN : 9781629608013
Genre : Computers
File Size : 79. 68 MB
Format : PDF
Download : 763
Read : 1026

Get This Book


Written for students in undergraduate and graduate statistics courses, as well as for the practitioner who wants to make better decisions from data and models, this updated and expanded second edition of Fundamentals of Predictive Analytics with JMP(R) bridges the gap between courses on basic statistics, which focus on univariate and bivariate analysis, and courses on data mining and predictive analytics. Going beyond the theoretical foundation, this book gives you the technical knowledge and problem-solving skills that you need to perform real-world multivariate data analysis. First, this book teaches you to recognize when it is appropriate to use a tool, what variables and data are required, and what the results might be. Second, it teaches you how to interpret the results and then, step-by-step, how and where to perform and evaluate the analysis in JMP . Using JMP 13 and JMP 13 Pro, this book offers the following new and enhanced features in an example-driven format: an add-in for Microsoft Excel Graph Builder dirty data visualization regression ANOVA logistic regression principal component analysis LASSO elastic net cluster analysis decision trees k-nearest neighbors neural networks bootstrap forests boosted trees text mining association rules model comparison With today’s emphasis on business intelligence, business analytics, and predictive analytics, this second edition is invaluable to anyone who needs to expand his or her knowledge of statistics and to apply real-world, problem-solving analysis. This book is part of the SAS Press program.

Statistics Learning From Data

Author : Roxy Peck
ISBN : 9781337558082
Genre : Mathematics
File Size : 43. 11 MB
Format : PDF, Docs
Download : 639
Read : 1143

Get This Book


STATISTICS: LEARNING FROM DATA, Second Edition, addresses common problems faced by learners of elementary statistics with an innovative approach. The authors have paid particular attention to areas learners often struggle with -- probability, hypothesis testing, and selecting an appropriate method of analysis. Probability coverage is based on current research on how students best learn the subject. A unique chapter that provides an informal introduction to the ideas of statistical inference helps students to develop a framework for choosing an appropriate method. Supported by learning objectives, real-data examples and exercises, and technology notes, this book helps learners to develop conceptual understanding, mechanical proficiency, and the ability to put knowledge into practice. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Generalized Linear Models

Author : Raymond H. Myers
ISBN : 9780470556979
Genre : Mathematics
File Size : 44. 51 MB
Format : PDF, ePub, Docs
Download : 561
Read : 185

Get This Book


Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities." —Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Maintaining the same nontechnical approach as its predecessor, this update has been thoroughly extended to include the latest developments, relevant computational approaches, and modern examples from the fields of engineering and physical sciences. This new edition maintains its accessible approach to the topic by reviewing the various types of problems that support the use of GLMs and providing an overview of the basic, related concepts such as multiple linear regression, nonlinear regression, least squares, and the maximum likelihood estimation procedure. Incorporating the latest developments, new features of this Second Edition include: A new chapter on random effects and designs for GLMs A thoroughly revised chapter on logistic and Poisson regression, now with additional results on goodness of fit testing, nominal and ordinal responses, and overdispersion A new emphasis on GLM design, with added sections on designs for regression models and optimal designs for nonlinear regression models Expanded discussion of weighted least squares, including examples that illustrate how to estimate the weights Illustrations of R code to perform GLM analysis The authors demonstrate the diverse applications of GLMs through numerous examples, from classical applications in the fields of biology and biopharmaceuticals to more modern examples related to engineering and quality assurance. The Second Edition has been designed to demonstrate the growing computational nature of GLMs, as SAS®, Minitab®, JMP®, and R software packages are used throughout the book to demonstrate fitting and analysis of generalized linear models, perform inference, and conduct diagnostic checking. Numerous figures and screen shots illustrating computer output are provided, and a related FTP site houses supplementary material, including computer commands and additional data sets. Generalized Linear Models, Second Edition is an excellent book for courses on regression analysis and regression modeling at the upper-undergraduate and graduate level. It also serves as a valuable reference for engineers, scientists, and statisticians who must understand and apply GLMs in their work.

An Introduction To Categorical Data Analysis

Author : Alan Agresti
ISBN : 9781119405269
Genre : Mathematics
File Size : 64. 50 MB
Format : PDF
Download : 371
Read : 489

Get This Book


A valuable new edition of a standard reference The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. An Introduction to Categorical Data Analysis, Third Edition summarizes these methods and shows readers how to use them using software. Readers will find a unified generalized linear models approach that connects logistic regression and loglinear models for discrete data with normal regression for continuous data. Adding to the value in the new edition is: • Illustrations of the use of R software to perform all the analyses in the book • A new chapter on alternative methods for categorical data, including smoothing and regularization methods (such as the lasso), classification methods such as linear discriminant analysis and classification trees, and cluster analysis • New sections in many chapters introducing the Bayesian approach for the methods of that chapter • More than 70 analyses of data sets to illustrate application of the methods, and about 200 exercises, many containing other data sets • An appendix showing how to use SAS, Stata, and SPSS, and an appendix with short solutions to most odd-numbered exercises Written in an applied, nontechnical style, this book illustrates the methods using a wide variety of real data, including medical clinical trials, environmental questions, drug use by teenagers, horseshoe crab mating, basketball shooting, correlates of happiness, and much more. An Introduction to Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and biostatisticians as well as methodologists in the social and behavioral sciences, medicine and public health, marketing, education, and the biological and agricultural sciences.

Top Download:

Best Books