journal of machine learning research

Download Book Journal Of Machine Learning Research in PDF format. You can Read Online Journal Of Machine Learning Research here in PDF, EPUB, Mobi or Docx formats.

Journal Of Machine Learning Research

Author :
ISBN : UCSD:31822036045433
Genre : Machine learning
File Size : 28. 63 MB
Format : PDF, Mobi
Download : 543
Read : 1233

Get This Book



Machine Learning

Author : Ryszard S. Michalski
ISBN : 9780080510545
Genre : Computers
File Size : 37. 22 MB
Format : PDF, ePub, Mobi
Download : 306
Read : 757

Get This Book


Machine Learning: An Artificial Intelligence Approach contains tutorial overviews and research papers representative of trends in the area of machine learning as viewed from an artificial intelligence perspective. The book is organized into six parts. Part I provides an overview of machine learning and explains why machines should learn. Part II covers important issues affecting the design of learning programs—particularly programs that learn from examples. It also describes inductive learning systems. Part III deals with learning by analogy, by experimentation, and from experience. Parts IV and V discuss learning from observation and discovery, and learning from instruction, respectively. Part VI presents two studies on applied learning systems—one on the recovery of valuable information via inductive inference; the other on inducing models of simple algebraic skills from observed student performance in the context of the Leeds Modeling System (LMS). This book is intended for researchers in artificial intelligence, computer science, and cognitive psychology; students in artificial intelligence and related disciplines; and a diverse range of readers, including computer scientists, robotics experts, knowledge engineers, educators, philosophers, data analysts, psychologists, and electronic engineers.

Understanding Machine Learning

Author : Shai Shalev-Shwartz
ISBN : 9781107057135
Genre : Computers
File Size : 55. 35 MB
Format : PDF, ePub, Docs
Download : 458
Read : 714

Get This Book


Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Machine Learning And Data Mining For Computer Security

Author : Marcus A. Maloof
ISBN : 9781846282539
Genre : Computers
File Size : 81. 45 MB
Format : PDF, ePub, Mobi
Download : 774
Read : 664

Get This Book


"Machine Learning and Data Mining for Computer Security" provides an overview of the current state of research in machine learning and data mining as it applies to problems in computer security. This book has a strong focus on information processing and combines and extends results from computer security. The first part of the book surveys the data sources, the learning and mining methods, evaluation methodologies, and past work relevant for computer security. The second part of the book consists of articles written by the top researchers working in this area. These articles deals with topics of host-based intrusion detection through the analysis of audit trails, of command sequences and of system calls as well as network intrusion detection through the analysis of TCP packets and the detection of malicious executables. This book fills the great need for a book that collects and frames work on developing and applying methods from machine learning and data mining to problems in computer security.

Encyclopedia Of Machine Learning

Author : Claude Sammut
ISBN : 9780387307688
Genre : Computers
File Size : 42. 38 MB
Format : PDF, ePub, Mobi
Download : 114
Read : 193

Get This Book


This comprehensive encyclopedia, with over 250 entries in an A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of machine learning. Most entries in this preeminent work include useful literature references. Topics for the Encyclopedia of Machine Learning were selected by a distinguished international advisory board. These peer-reviewed, highly-structured entries include definitions, illustrations, applications, bibliographies and links to related literature, providing the reader with a portal to more detailed information on any given topic. The style of the entries in the Encyclopedia of Machine Learning is expository and tutorial, making the book a practical resource for machine learning experts, as well as professionals in other fields who need to access this vital information but may not have the time to work their way through an entire text on their topic of interest. The authoritative reference is published both in print and online. The print publication includes an index of subjects and authors. The online edition supplements this index with hyperlinks as well as internal hyperlinks to related entries in the text, CrossRef citations, and links to additional significant research.

Machine Learning For Data Streams

Author : Albert Bifet
ISBN : 9780262346054
Genre : Computers
File Size : 68. 97 MB
Format : PDF, ePub, Mobi
Download : 692
Read : 499

Get This Book


A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework. Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations. The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.

Advances In Machine Learning Research And Application 2013 Edition

Author :
ISBN : 9781481670982
Genre : Computers
File Size : 80. 72 MB
Format : PDF, ePub, Docs
Download : 594
Read : 258

Get This Book


Advances in Machine Learning Research and Application: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Artificial Intelligence. The editors have built Advances in Machine Learning Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Artificial Intelligence in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Machine Learning Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Foundations Of Machine Learning

Author : Mehryar Mohri
ISBN : 9780262304733
Genre : Computers
File Size : 78. 96 MB
Format : PDF, Kindle
Download : 327
Read : 1027

Get This Book


This graduate-level textbook introduces fundamental concepts and methods in machine learning. It describes several important modern algorithms, provides the theoretical underpinnings of these algorithms, and illustrates key aspects for their application. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning fills the need for a general textbook that also offers theoretical details and an emphasis on proofs. Certain topics that are often treated with insufficient attention are discussed in more detail here; for example, entire chapters are devoted to regression, multi-class classification, and ranking. The first three chapters lay the theoretical foundation for what follows, but each remaining chapter is mostly self-contained. The appendix offers a concise probability review, a short introduction to convex optimization, tools for concentration bounds, and several basic properties of matrices and norms used in the book.The book is intended for graduate students and researchers in machine learning, statistics, and related areas; it can be used either as a textbook or as a reference text for a research seminar.

Universal Artificial Intelligence

Author : Marcus Hutter
ISBN : 9783540268772
Genre : Computers
File Size : 52. 27 MB
Format : PDF, ePub
Download : 324
Read : 1323

Get This Book


Personal motivation. The dream of creating artificial devices that reach or outperform human inteUigence is an old one. It is also one of the dreams of my youth, which have never left me. What makes this challenge so interesting? A solution would have enormous implications on our society, and there are reasons to believe that the AI problem can be solved in my expected lifetime. So, it's worth sticking to it for a lifetime, even if it takes 30 years or so to reap the benefits. The AI problem. The science of artificial intelligence (AI) may be defined as the construction of intelligent systems and their analysis. A natural definition of a system is anything that has an input and an output stream. Intelligence is more complicated. It can have many faces like creativity, solving prob lems, pattern recognition, classification, learning, induction, deduction, build ing analogies, optimization, surviving in an environment, language processing, and knowledge. A formal definition incorporating every aspect of intelligence, however, seems difficult. Most, if not all known facets of intelligence can be formulated as goal driven or, more precisely, as maximizing some utility func tion. It is, therefore, sufficient to study goal-driven AI; e. g. the (biological) goal of animals and humans is to survive and spread. The goal of AI systems should be to be useful to humans.

Optimization For Machine Learning

Author : Suvrit Sra
ISBN : 9780262016469
Genre : Computers
File Size : 22. 74 MB
Format : PDF, ePub, Mobi
Download : 212
Read : 969

Get This Book


The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields.Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.

Top Download:

Best Books