latent markov models for longitudinal data chapman hall crc statistics in the social and behavioral sciences

Download Book Latent Markov Models For Longitudinal Data Chapman Hall Crc Statistics In The Social And Behavioral Sciences in PDF format. You can Read Online Latent Markov Models For Longitudinal Data Chapman Hall Crc Statistics In The Social And Behavioral Sciences here in PDF, EPUB, Mobi or Docx formats.

Latent Markov Models For Longitudinal Data

Author : Francesco Bartolucci
ISBN : 9781466583719
Genre : Mathematics
File Size : 36. 86 MB
Format : PDF
Download : 570
Read : 223

Get This Book

Drawing on the authors’ extensive research in the analysis of categorical longitudinal data, Latent Markov Models for Longitudinal Data focuses on the formulation of latent Markov models and the practical use of these models. Numerous examples illustrate how latent Markov models are used in economics, education, sociology, and other fields. The R and MATLAB® routines used for the examples are available on the authors’ website. The book provides you with the essential background on latent variable models, particularly the latent class model. It discusses how the Markov chain model and the latent class model represent a useful paradigm for latent Markov models. The authors illustrate the assumptions of the basic version of the latent Markov model and introduce maximum likelihood estimation through the Expectation-Maximization algorithm. They also cover constrained versions of the basic latent Markov model, describe the inclusion of the individual covariates, and address the random effects and multilevel extensions of the model. After covering advanced topics, the book concludes with a discussion on Bayesian inference as an alternative to maximum likelihood inference. As longitudinal data become increasingly relevant in many fields, researchers must rely on specific statistical and econometric models tailored to their application. A complete overview of latent Markov models, this book demonstrates how to use the models in three types of analysis: transition analysis with measurement errors, analyses that consider unobserved heterogeneity, and finding clusters of units and studying the transition between the clusters.

Generalized Linear Models For Categorical And Continuous Limited Dependent Variables

Author : Michael Smithson
ISBN : 9781466551732
Genre : Mathematics
File Size : 72. 43 MB
Format : PDF, Mobi
Download : 751
Read : 1079

Get This Book

Generalized Linear Models for Categorical and Continuous Limited Dependent Variables is designed for graduate students and researchers in the behavioral, social, health, and medical sciences. It incorporates examples of truncated counts, censored continuous variables, and doubly bounded continuous variables, such as percentages. The book provides broad, but unified, coverage, and the authors integrate the concepts and ideas shared across models and types of data, especially regarding conceptual links between discrete and continuous limited dependent variables. The authors argue that these dependent variables are, if anything, more common throughout the human sciences than the kind that suit linear regression. They cover special cases or extensions of models, estimation methods, model diagnostics, and, of course, software. They also discuss bounded continuous variables, boundary-inflated models, and methods for modeling heteroscedasticity. Wherever possible, the authors have illustrated concepts, models, and techniques with real or realistic datasets and demonstrations in R and Stata, and each chapter includes several exercises at the end. The illustrations and exercises help readers build conceptual understanding and fluency in using these techniques. At several points the authors bring together material that has been previously scattered across the literature in journal articles, software package documentation files, and blogs. These features help students learn to choose the appropriate models for their purpose.

Analysis And Modeling Of Complex Data In Behavioral And Social Sciences

Author : Donatella Vicari
ISBN : 9783319066929
Genre : Mathematics
File Size : 79. 93 MB
Format : PDF, Kindle
Download : 423
Read : 422

Get This Book

This volume presents theoretical developments, applications and computational methods for the analysis and modeling in behavioral and social sciences where data are usually complex to explore and investigate. The challenging proposals provide a connection between statistical methodology and the social domain with particular attention to computational issues in order to effectively address complicated data analysis problems. The papers in this volume stem from contributions initially presented at the joint international meeting JCS-CLADAG held in Anacapri (Italy) where the Japanese Classification Society and the Classification and Data Analysis Group of the Italian Statistical Society had a stimulating scientific discussion and exchange.

Longitudinal Models In The Behavioral And Related Sciences

Author : Kees van Montfort
ISBN : 9781351559744
Genre : Education
File Size : 74. 36 MB
Format : PDF, ePub, Mobi
Download : 710
Read : 509

Get This Book

This volume reviews longitudinal models and analysis procedures for use in the behavioral and social sciences. Written by distinguished experts in the field, the book presents the most current approaches and theories, and the technical problems that may be encountered along the way. Readers will find new ideas about the use of longitudinal analysis in solving problems that arise due to the specific nature of the research design and the data available. Longitudinal Models in the Behavioral and Related Sciences opens with the latest theoretical developments. In particular, the book addresses situations that arise due to the categorical nature of the data, issues related to state space modeling, and potential problems that may arise from network analysis and/or growth-curve data. The focus of part two is on the application of longitudinal modeling in a variety of disciplines. The book features applications such as heterogeneity on the patterns of a firm’s profit, on house prices, and on delinquent behavior; non-linearity in growth in assessing cognitive aging; measurement error issues in longitudinal research; and distance association for the analysis of change. Part two clearly demonstrates the caution that should be taken when applying longitudinal modeling as well as in the interpretation of the results. This new volume is ideal for advanced students and researchers in psychology, sociology, education, economics, management, medicine, and neuroscience.

Longitudinal Research With Latent Variables

Author : Kees van Montfort
ISBN : 9783642117602
Genre : Mathematics
File Size : 85. 21 MB
Format : PDF, ePub, Mobi
Download : 242
Read : 1322

Get This Book

Since Charles Spearman published his seminal paper on factor analysis in 1904 and Karl Joresk ̈ og replaced the observed variables in an econometric structural equation model by latent factors in 1970, causal modelling by means of latent variables has become the standard in the social and behavioural sciences. Indeed, the central va- ables that social and behavioural theories deal with, can hardly ever be identi?ed as observed variables. Statistical modelling has to take account of measurement - rors and invalidities in the observed variables and so address the underlying latent variables. Moreover, during the past decades it has been widely agreed on that serious causal modelling should be based on longitudinal data. It is especially in the ?eld of longitudinal research and analysis, including panel research, that progress has been made in recent years. Many comprehensive panel data sets as, for example, on human development and voting behaviour have become available for analysis. The number of publications based on longitudinal data has increased immensely. Papers with causal claims based on cross-sectional data only experience rejection just for that reason.

Analysis Of Time Series Structure

Author : Nina Golyandina
ISBN : 1420035843
Genre : Mathematics
File Size : 81. 94 MB
Format : PDF, ePub, Docs
Download : 642
Read : 616

Get This Book

Over the last 15 years, singular spectrum analysis (SSA) has proven very successful. It has already become a standard tool in climatic and meteorological time series analysis and well known in nonlinear physics and signal processing. However, despite the promise it holds for time series applications in other disciplines, SSA is not widely known among statisticians and econometrists, and although the basic SSA algorithm looks simple, understanding what it does and where its pitfalls lay is by no means simple. Analysis of Time Series Structure: SSA and Related Techniques provides a careful, lucid description of its general theory and methodology. Part I introduces the basic concepts, and sets forth the main findings and results, then presents a detailed treatment of the methodology. After introducing the basic SSA algorithm, the authors explore forecasting and apply SSA ideas to change-point detection algorithms. Part II is devoted to the theory of SSA. Here the authors formulate and prove the statements of Part I. They address the singular value decomposition (SVD) of real matrices, time series of finite rank, and SVD of trajectory matrices. Based on the authors' original work and filled with applications illustrated with real data sets, this book offers an outstanding opportunity to obtain a working knowledge of why, when, and how SSA works. It builds a strong foundation for successfully using the technique in applications ranging from mathematics and nonlinear physics to economics, biology, oceanology, social science, engineering, financial econometrics, and market research.


Author :
ISBN : UOM:39015065057591
Genre : Experimental design
File Size : 73. 58 MB
Format : PDF, Mobi
Download : 206
Read : 1108

Get This Book

Top Download:

Best Books