learning r a step by step function guide to data analysis

Download Book Learning R A Step By Step Function Guide To Data Analysis in PDF format. You can Read Online Learning R A Step By Step Function Guide To Data Analysis here in PDF, EPUB, Mobi or Docx formats.

Essential First Steps To Data Analysis

Author : Carol S. Parke
ISBN : 9781412997515
Genre : Computers
File Size : 57. 96 MB
Format : PDF, Kindle
Download : 464
Read : 888

Get This Book


Carol S. Parke's Essential First Steps to Data Analysis: Scenario-Based Examples Using SPSS provides instruction and guidance on preparing quantitative data sets prior to answering a study's research questions. Such preparation may involve data management and manipulation tasks, data organization, structural changes to the data files, or conducting preliminary analysis. Twelve research-based scenarios are used to present the content. Each scenario tells the "story" of a researcher who thoroughly examined their data and the decisions they made along the way. The scenario begins with a description of the researcher's study and his/her data file(s), then describes the issues the researcher must address, explains why they are important, shows how SPSS was used to address the issues and prepare data, and shares the researcher's reflections and any additional decision-making. Finally, each scenario ends with the researcher's written summary of the procedures and outcomes from the initial data preparation or analysis.

Modeling Techniques In Predictive Analytics With Python And R

Author : Thomas W. Miller
ISBN : 9780133892147
Genre : Computers
File Size : 77. 31 MB
Format : PDF
Download : 684
Read : 249

Get This Book


Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more

The Book Of R

Author : Tilman M. Davies
ISBN : 9781593276515
Genre : Computers
File Size : 78. 33 MB
Format : PDF, ePub, Mobi
Download : 197
Read : 981

Get This Book


The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: *The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops *Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R *How to access R’s thousands of functions, libraries, and data sets *How to draw valid and useful conclusions from your data *How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.

Introduction To Multivariate Statistical Analysis In Chemometrics

Author : Kurt Varmuza
ISBN : 1420059491
Genre : Science
File Size : 32. 2 MB
Format : PDF
Download : 706
Read : 175

Get This Book


Using formal descriptions, graphical illustrations, practical examples, and R software tools, Introduction to Multivariate Statistical Analysis in Chemometrics presents simple yet thorough explanations of the most important multivariate statistical methods for analyzing chemical data. It includes discussions of various statistical methods, such as principal component analysis, regression analysis, classification methods, and clustering. Written by a chemometrician and a statistician, the book reflects the practical approach of chemometrics and the more formally oriented one of statistics. To enable a better understanding of the statistical methods, the authors apply them to real data examples from chemistry. They also examine results of the different methods, comparing traditional approaches with their robust counterparts. In addition, the authors use the freely available R package to implement methods, encouraging readers to go through the examples and adapt the procedures to their own problems. Focusing on the practicality of the methods and the validity of the results, this book offers concise mathematical descriptions of many multivariate methods and employs graphical schemes to visualize key concepts. It effectively imparts a basic understanding of how to apply statistical methods to multivariate scientific data.

Modeling Techniques In Predictive Analytics

Author : Thomas W. Miller
ISBN : 9780133886191
Genre : Computers
File Size : 87. 74 MB
Format : PDF, ePub, Mobi
Download : 257
Read : 439

Get This Book


To succeed with predictive analytics, you must understand it on three levels: Strategy and management Methods and models Technology and code This up-to-the-minute reference thoroughly covers all three categories. Now fully updated, this uniquely accessible book will help you use predictive analytics to solve real business problems and drive real competitive advantage. If you’re new to the discipline, it will give you the strong foundation you need to get accurate, actionable results. If you’re already a modeler, programmer, or manager, it will teach you crucial skills you don’t yet have. Unlike competitive books, this guide illuminates the discipline through realistic vignettes and intuitive data visualizations–not complex math. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, guides you through defining problems, identifying data, crafting and optimizing models, writing effective R code, interpreting results, and more. Every chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work–and maximize their value. Reflecting extensive student and instructor feedback, this edition adds five classroom-tested case studies, updates all code for new versions of R, explains code behavior more clearly and completely, and covers modern data science methods even more effectively. All data sets, extensive R code, and additional examples available for download at http://www.ftpress.com/miller If you want to make the most of predictive analytics, data science, and big data, this is the book for you. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, appealing to managers, analysts, programmers, and students alike. Miller addresses multiple business cases and challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic R programs that deliver actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Throughout, Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. This edition adds five new case studies, updates all code for the newest versions of R, adds more commenting to clarify how the code works, and offers a more detailed and up-to-date primer on data science methods. Gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more

Web And Network Data Science

Author : Thomas W. Miller
ISBN : 9780133887648
Genre : Computers
File Size : 78. 32 MB
Format : PDF, Kindle
Download : 439
Read : 1189

Get This Book


Master modern web and network data modeling: both theory and applications. In Web and Network Data Science, a top faculty member of Northwestern University’s prestigious analytics program presents the first fully-integrated treatment of both the business and academic elements of web and network modeling for predictive analytics. Some books in this field focus either entirely on business issues (e.g., Google Analytics and SEO); others are strictly academic (covering topics such as sociology, complexity theory, ecology, applied physics, and economics). This text gives today's managers and students what they really need: integrated coverage of concepts, principles, and theory in the context of real-world applications. Building on his pioneering Web Analytics course at Northwestern University, Thomas W. Miller covers usability testing, Web site performance, usage analysis, social media platforms, search engine optimization (SEO), and many other topics. He balances this practical coverage with accessible and up-to-date introductions to both social network analysis and network science, demonstrating how these disciplines can be used to solve real business problems.

Soft Computing In Data Science

Author : Azlinah Mohamed
ISBN : 9789811072420
Genre : Computers
File Size : 71. 75 MB
Format : PDF, Mobi
Download : 582
Read : 684

Get This Book


This book constitutes the refereed proceedings of the International Conference on Soft Computing in Data Science, SCDS 2017, held in Yogyakarta, Indonesia, November 27-28, 2017. The 26 revised full papers presented were carefully reviewed and selected from 68 submissions. The papers are organized in topical sections on deep learning and real-time classification; image feature classification and extraction; classification, clustering, visualization; applications of machine learning; data visualization; fuzzy logic; prediction models and e-learning; text and sentiment analytics.

Management And Business Research

Author : Mark Easterby-Smith
ISBN : 9781473927650
Genre : Business & Economics
File Size : 83. 26 MB
Format : PDF
Download : 484
Read : 758

Get This Book


Now in its Fifth Edition, this much-loved text offers theoretical and philosophical depth as well as insights into practice. The text covers the entire research process in an accessible way and provides critical, thoughtful treatment of important issues like ethics and politics, making it an invaluable companion for any business and management student New to the Fifth Edition: Expanded to include examples from across business and management including Marketing, International Business and Psychology Up-to-date, international examples and cases from a range of countries Introductory chapter looks at writing proposals in detail Chapter on the literature review now includes how to critically review Move towards new technologies and social media including discussion of wikis and cloud sourcing Improved structure and flow, with three chapters on qualitative methods and three on quantitative methods Additional practical exercises which are linked to key research tasks throughout The companion website (https://edge.sagepub.com/easterbysmith) offers a wealth of resources for both lecturers and students including, for lecturers, an instructor's manual and PowerPoint slides and, for students, author podcasts, journal articles, web links, MCQs, datasets and a glossary.

Data Science For Business And Decision Making

Author : Luiz Paulo Fávero
ISBN : 9780128112175
Genre : Business & Economics
File Size : 34. 29 MB
Format : PDF, Docs
Download : 419
Read : 363

Get This Book


Data Science for Business and Decision Making covers both statistics and operations research while most competing textbooks focus on one or the other. As a result, the book more clearly defines the principles of business analytics for those who want to apply quantitative methods in their work. Its emphasis reflects the importance of regression, optimization and simulation for practitioners of business analytics. Each chapter uses a didactic format that is followed by exercises and answers. Freely-accessible datasets enable students and professionals to work with Excel, Stata Statistical Software®, and IBM SPSS Statistics Software®. Combines statistics and operations research modeling to teach the principles of business analytics Written for students who want to apply statistics, optimization and multivariate modeling to gain competitive advantages in business Shows how powerful software packages, such as SPSS and Stata, can create graphical and numerical outputs

The Cumulative Book Index

Author :
ISBN : UOM:39015058373732
Genre : American literature
File Size : 32. 68 MB
Format : PDF, Docs
Download : 689
Read : 980

Get This Book



Top Download:

Best Books