learning tensorflow

Download Book Learning Tensorflow in PDF format. You can Read Online Learning Tensorflow here in PDF, EPUB, Mobi or Docx formats.

Learning Tensorflow

Author : Tom Hope
ISBN : 9781491978481
Genre : Computers
File Size : 45. 25 MB
Format : PDF, ePub, Mobi
Download : 759
Read : 998

Download Now


Roughly inspired by the human brain, deep neural networks trained with large amounts of data can solve complex tasks with unprecedented accuracy. This practical book provides an end-to-end guide to TensorFlow, the leading open source software library that helps you build and train neural networks for computer vision, natural language processing (NLP), speech recognition, and general predictive analytics. Authors Tom Hope, Yehezkel Resheff, and Itay Lieder provide a hands-on approach to TensorFlow fundamentals for a broad technical audience—from data scientists and engineers to students and researchers. You’ll begin by working through some basic examples in TensorFlow before diving deeper into topics such as neural network architectures, TensorBoard visualization, TensorFlow abstraction libraries, and multithreaded input pipelines. Once you finish this book, you’ll know how to build and deploy production-ready deep learning systems in TensorFlow. Get up and running with TensorFlow, rapidly and painlessly Learn how to use TensorFlow to build deep learning models from the ground up Train popular deep learning models for computer vision and NLP Use extensive abstraction libraries to make development easier and faster Learn how to scale TensorFlow, and use clusters to distribute model training Deploy TensorFlow in a production setting

Pro Deep Learning With Tensorflow

Author : Santanu Pattanayak
ISBN : 9781484230961
Genre : Computers
File Size : 37. 28 MB
Format : PDF
Download : 950
Read : 742

Download Now


Deploy deep learning solutions in production with ease using TensorFlow. You'll also develop the mathematical understanding and intuition required to invent new deep learning architectures and solutions on your own. Pro Deep Learning with TensorFlow provides practical, hands-on expertise so you can learn deep learning from scratch and deploy meaningful deep learning solutions. This book will allow you to get up to speed quickly using TensorFlow and to optimize different deep learning architectures. All of the practical aspects of deep learning that are relevant in any industry are emphasized in this book. You will be able to use the prototypes demonstrated to build new deep learning applications. The code presented in the book is available in the form of iPython notebooks and scripts which allow you to try out examples and extend them in interesting ways. You will be equipped with the mathematical foundation and scientific knowledge to pursue research in this field and give back to the community. What You'll Learn Understand full stack deep learning using TensorFlow and gain a solid mathematical foundation for deep learning Deploy complex deep learning solutions in production using TensorFlow Carry out research on deep learning and perform experiments using TensorFlow Who This Book Is For Data scientists and machine learning professionals, software developers, graduate students, and open source enthusiasts

Hands On Machine Learning With Scikit Learn And Tensorflow

Author : Aurélien Géron
ISBN : 9781491962244
Genre : Computers
File Size : 42. 24 MB
Format : PDF, Docs
Download : 599
Read : 578

Download Now


Graphics in this book are printed in black and white. Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—scikit-learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use scikit-learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets Apply practical code examples without acquiring excessive machine learning theory or algorithm details

Tensorflow Machine Learning Cookbook

Author : Nick McClure
ISBN : 9781786466303
Genre : Computers
File Size : 31. 35 MB
Format : PDF, ePub
Download : 596
Read : 1118

Download Now


Explore machine learning concepts using the latest numerical computing library — TensorFlow — with the help of this comprehensive cookbook About This Book Your quick guide to implementing TensorFlow in your day-to-day machine learning activities Learn advanced techniques that bring more accuracy and speed to machine learning Upgrade your knowledge to the second generation of machine learning with this guide on TensorFlow Who This Book Is For This book is ideal for data scientists who are familiar with C++ or Python and perform machine learning activities on a day-to-day basis. Intermediate and advanced machine learning implementers who need a quick guide they can easily navigate will find it useful. What You Will Learn Become familiar with the basics of the TensorFlow machine learning library Get to know Linear Regression techniques with TensorFlow Learn SVMs with hands-on recipes Implement neural networks and improve predictions Apply NLP and sentiment analysis to your data Master CNN and RNN through practical recipes Take TensorFlow into production In Detail TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You'll work through recipes on training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and deep learning – each using Google's machine learning library TensorFlow. This guide starts with the fundamentals of the TensorFlow library which includes variables, matrices, and various data sources. Moving ahead, you will get hands-on experience with Linear Regression techniques with TensorFlow. The next chapters cover important high-level concepts such as neural networks, CNN, RNN, and NLP. Once you are familiar and comfortable with the TensorFlow ecosystem, the last chapter will show you how to take it to production. Style and approach This book takes a recipe-based approach where every topic is explicated with the help of a real-world example.

Tensorflow For Deep Learning

Author : Bharath Ramsundar
ISBN : 9781491980408
Genre : Computers
File Size : 49. 96 MB
Format : PDF, Kindle
Download : 772
Read : 1171

Download Now


Learn how to solve challenging machine learning problems with Tensorflow, Google’s revolutionary new system for deep learning. If you have some background with basic linear algebra and calculus, this practical book shows you how to build—and when to use—deep learning architectures. You’ll learn how to design systems capable of detecting objects in images, understanding human speech, analyzing video, and predicting the properties of potential medicines. TensorFlow for Deep Learning teaches concepts through practical examples and builds understanding of deep learning foundations from the ground up. It’s ideal for practicing developers comfortable with designing software systems, but not necessarily with creating learning systems. This book is also useful for scientists and other professionals who are comfortable with scripting, but not necessarily with designing learning algorithms. Gain in-depth knowledge of the TensorFlow API and primitives. Understand how to train and tune machine learning systems with TensorFlow on large datasets. Learn how to use TensorFlow with convolutional networks, recurrent networks, LSTMs, and reinforcement learning.

Machine Learning With Tensorflow

Author : Nishant Shukla
ISBN : 1617293873
Genre : Computers
File Size : 33. 36 MB
Format : PDF, ePub, Mobi
Download : 884
Read : 826

Download Now


Summary Machine Learning with TensorFlow gives readers a solid foundation in machine-learning concepts plus hands-on experience coding TensorFlow with Python. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology TensorFlow, Google's library for large-scale machine learning, simplifies often-complex computations by representing them as graphs and efficiently mapping parts of the graphs to machines in a cluster or to the processors of a single machine. About the Book Machine Learning with TensorFlow gives readers a solid foundation in machine-learning concepts plus hands-on experience coding TensorFlow with Python. You'll learn the basics by working with classic prediction, classification, and clustering algorithms. Then, you'll move on to the money chapters: exploration of deep-learning concepts like autoencoders, recurrent neural networks, and reinforcement learning. Digest this book and you will be ready to use TensorFlow for machine-learning and deep-learning applications of your own. What's Inside Matching your tasks to the right machine-learning and deep-learning approaches Visualizing algorithms with TensorBoard Understanding and using neural networks About the Reader Written for developers experienced with Python and algebraic concepts like vectors and matrices. About the Author Author Nishant Shukla is a computer vision researcher focused on applying machine-learning techniques in robotics. Senior technical editor, Kenneth Fricklas, is a seasoned developer, author, and machine-learning practitioner. Table of Contents PART 1 - YOUR MACHINE-LEARNING RIG A machine-learning odyssey TensorFlow essentials PART 2 - CORE LEARNING ALGORITHMS Linear regression and beyond A gentle introduction to classification Automatically clustering data Hidden Markov models PART 3 - THE NEURAL NETWORK PARADIGM A peek into autoencoders Reinforcement learning Convolutional neural networks Recurrent neural networks Sequence-to-sequence models for chatbots Utility landscape

Tensorflow 1 X Deep Learning Cookbook

Author : Antonio Gulli
ISBN : 9781788291866
Genre : Computers
File Size : 84. 50 MB
Format : PDF
Download : 953
Read : 582

Download Now


Take the next step in implementing various common and not-so-common neural networks with Tensorflow 1.x About This Book Skill up and implement tricky neural networks using Google's TensorFlow 1.x An easy-to-follow guide that lets you explore reinforcement learning, GANs, autoencoders, multilayer perceptrons and more. Hands-on recipes to work with Tensorflow on desktop, mobile, and cloud environment Who This Book Is For This book is intended for data analysts, data scientists, machine learning practitioners and deep learning enthusiasts who want to perform deep learning tasks on a regular basis and are looking for a handy guide they can refer to. People who are slightly familiar with neural networks, and now want to gain expertise in working with different types of neural networks and datasets, will find this book quite useful. What You Will Learn Install TensorFlow and use it for CPU and GPU operations Implement DNNs and apply them to solve different AI-driven problems. Leverage different data sets such as MNIST, CIFAR-10, and Youtube8m with TensorFlow and learn how to access and use them in your code. Use TensorBoard to understand neural network architectures, optimize the learning process, and peek inside the neural network black box. Use different regression techniques for prediction and classification problems Build single and multilayer perceptrons in TensorFlow Implement CNN and RNN in TensorFlow, and use it to solve real-world use cases. Learn how restricted Boltzmann Machines can be used to recommend movies. Understand the implementation of Autoencoders and deep belief networks, and use them for emotion detection. Master the different reinforcement learning methods to implement game playing agents. GANs and their implementation using TensorFlow. In Detail Deep neural networks (DNNs) have achieved a lot of success in the field of computer vision, speech recognition, and natural language processing. The entire world is filled with excitement about how deep networks are revolutionizing artificial intelligence. This exciting recipe-based guide will take you from the realm of DNN theory to implementing them practically to solve the real-life problems in artificial intelligence domain. In this book, you will learn how to efficiently use TensorFlow, Google's open source framework for deep learning. You will implement different deep learning networks such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Deep Q-learning Networks (DQNs), and Generative Adversarial Networks (GANs) with easy to follow independent recipes. You will learn how to make Keras as backend with TensorFlow. With a problem-solution approach, you will understand how to implement different deep neural architectures to carry out complex tasks at work. You will learn the performance of different DNNs on some popularly used data sets such as MNIST, CIFAR-10, Youtube8m, and more. You will not only learn about the different mobile and embedded platforms supported by TensorFlow but also how to set up cloud platforms for deep learning applications. Get a sneak peek of TPU architecture and how they will affect DNN future. By using crisp, no-nonsense recipes, you will become an expert in implementing deep learning techniques in growing real-world applications and research areas such as reinforcement learning, GANs, autoencoders and more. Style and approach This book consists of hands-on recipes where you'll deal with real-world problems. You'll execute a series of tasks as you walk through data mining challenges using TensorFlow 1.x. Your one-stop solution for common and not-so-common pain points, this is a book that you must have on the shelf.

Deep Learning With Tensorflow

Author : Giancarlo Zaccone
ISBN : 9781786460127
Genre : Computers
File Size : 29. 36 MB
Format : PDF, Docs
Download : 340
Read : 276

Download Now


Delve into neural networks, implement deep learning algorithms, and explore layers of data abstraction with the help of this comprehensive TensorFlow guide About This Book Learn how to implement advanced techniques in deep learning with Google's brainchild, TensorFlow Explore deep neural networks and layers of data abstraction with the help of this comprehensive guide Real-world contextualization through some deep learning problems concerning research and application Who This Book Is For The book is intended for a general audience of people interested in machine learning and machine intelligence. A rudimentary level of programming in one language is assumed, as is a basic familiarity with computer science techniques and technologies, including a basic awareness of computer hardware and algorithms. Some competence in mathematics is needed to the level of elementary linear algebra and calculus. What You Will Learn Learn about machine learning landscapes along with the historical development and progress of deep learning Learn about deep machine intelligence and GPU computing with the latest TensorFlow 1.x Access public datasets and utilize them using TensorFlow to load, process, and transform data Use TensorFlow on real-world datasets, including images, text, and more Learn how to evaluate the performance of your deep learning models Using deep learning for scalable object detection and mobile computing Train machines quickly to learn from data by exploring reinforcement learning techniques Explore active areas of deep learning research and applications In Detail Deep learning is the step that comes after machine learning, and has more advanced implementations. Machine learning is not just for academics anymore, but is becoming a mainstream practice through wide adoption, and deep learning has taken the front seat. As a data scientist, if you want to explore data abstraction layers, this book will be your guide. This book shows how this can be exploited in the real world with complex raw data using TensorFlow 1.x. Throughout the book, you'll learn how to implement deep learning algorithms for machine learning systems and integrate them into your product offerings, including search, image recognition, and language processing. Additionally, you'll learn how to analyze and improve the performance of deep learning models. This can be done by comparing algorithms against benchmarks, along with machine intelligence, to learn from the information and determine ideal behaviors within a specific context. After finishing the book, you will be familiar with machine learning techniques, in particular the use of TensorFlow for deep learning, and will be ready to apply your knowledge to research or commercial projects. Style and approach This step-by-step guide will explore common, and not so common, deep neural networks and show how these can be exploited in the real world with complex raw data. With the help of practical examples, you will learn how to implement different types of neural nets to build smart applications related to text, speech, and image data processing.

Building Machine Learning Projects With Tensorflow

Author : Rodolfo Bonnin
ISBN : 9781786466822
Genre : Computers
File Size : 60. 92 MB
Format : PDF, ePub, Docs
Download : 700
Read : 358

Download Now


Engaging projects that will teach you how complex data can be exploited to gain the most insight About This Book Bored of too much theory on TensorFlow? This book is what you need! Thirteen solid projects and four examples teach you how to implement TensorFlow in production. This example-rich guide teaches you how to perform highly accurate and efficient numerical computing with TensorFlow It is a practical and methodically explained guide that allows you to apply Tensorflow's features from the very beginning. Who This Book Is For This book is for data analysts, data scientists, and researchers who want to increase the speed and efficiency of their machine learning activities and results. Anyone looking for a fresh guide to complex numerical computations with TensorFlow will find this an extremely helpful resource. This book is also for developers who want to implement TensorFlow in production in various scenarios. Some experience with C++ and Python is expected. What You Will Learn Load, interact, dissect, process, and save complex datasets Solve classification and regression problems using state of the art techniques Predict the outcome of a simple time series using Linear Regression modeling Use a Logistic Regression scheme to predict the future result of a time series Classify images using deep neural network schemes Tag a set of images and detect features using a deep neural network, including a Convolutional Neural Network (CNN) layer Resolve character recognition problems using the Recurrent Neural Network (RNN) model In Detail This book of projects highlights how TensorFlow can be used in different scenarios - this includes projects for training models, machine learning, deep learning, and working with various neural networks. Each project provides exciting and insightful exercises that will teach you how to use TensorFlow and show you how layers of data can be explored by working with Tensors. Simply pick a project that is in line with your environment and get stacks of information on how to implement TensorFlow in production. Style and approach This book is a practical guide to implementing TensorFlow in production. It explores various scenarios in which you could use TensorFlow and shows you how to use it in the context of real world projects. This will not only give you an upper hand in the field, but shows the potential for innovative uses of TensorFlow in your environment. This guide opens the door to second generation machine learning and numerical computation – a must-have for your bookshelf!

Hands On Deep Learning With Tensorflow

Author : Dan Van Boxel
ISBN : 9781787125827
Genre : Computers
File Size : 79. 23 MB
Format : PDF, ePub
Download : 185
Read : 250

Download Now


This book is your guide to exploring the possibilities in the field of deep learning, making use of Google's TensorFlow. You will learn about convolutional neural networks, and logistic regression while training models for deep learning to gain key insights into your data. About This Book Explore various possibilities with deep learning and gain amazing insights from data using Google's brainchild-- TensorFlow Want to learn what more can be done with deep learning? Explore various neural networks with the help of this comprehensive guide Rich in concepts, advanced guide on deep learning that will give you background to innovate in your environment Who This Book Is For If you are a data scientist who performs machine learning on a regular basis, are familiar with deep neural networks, and now want to gain expertise in working with convoluted neural networks, then this book is for you. Some familiarity with C++ or Python is assumed. What You Will Learn Set up your computing environment and install TensorFlow Build simple TensorFlow graphs for everyday computations Apply logistic regression for classification with TensorFlow Design and train a multilayer neural network with TensorFlow Intuitively understand convolutional neural networks for image recognition Bootstrap a neural network from simple to more accurate models See how to use TensorFlow with other types of networks Program networks with SciKit-Flow, a high-level interface to TensorFlow In Detail Dan Van Boxel's Deep Learning with TensorFlow is based on Dan's best-selling TensorFlow video course. With deep learning going mainstream, making sense of data and getting accurate results using deep networks is possible. Dan Van Boxel will be your guide to exploring the possibilities with deep learning; he will enable you to understand data like never before. With the efficiency and simplicity of TensorFlow, you will be able to process your data and gain insights that will change how you look at data. With Dan's guidance, you will dig deeper into the hidden layers of abstraction using raw data. Dan then shows you various complex algorithms for deep learning and various examples that use these deep neural networks. You will also learn how to train your machine to craft new features to make sense of deeper layers of data. In this book, Dan shares his knowledge across topics such as logistic regression, convolutional neural networks, recurrent neural networks, training deep networks, and high level interfaces. With the help of novel practical examples, you will become an ace at advanced multilayer networks, image recognition, and beyond. Style and Approach This book is your go-to guide to becoming a deep learning expert in your organization. Dan helps you evaluate common and not-so-common deep neural networks with the help of insightful examples that you can relate to, and show how they can be exploited in the real world with complex raw data.

Top Download:

Best Books