learning to love data science

Download Book Learning To Love Data Science in PDF format. You can Read Online Learning To Love Data Science here in PDF, EPUB, Mobi or Docx formats.

Learning To Love Data Science

Author : Mike Barlow
ISBN : 9781491936542
Genre : Computers
File Size : 29. 68 MB
Format : PDF
Download : 937
Read : 357

Get This Book


Until recently, many people thought big data was a passing fad. "Data science" was an enigmatic term. Today, big data is taken seriously, and data science is considered downright sexy. With this anthology of reports from award-winning journalist Mike Barlow, you’ll appreciate how data science is fundamentally altering our world, for better and for worse. Barlow paints a picture of the emerging data space in broad strokes. From new techniques and tools to the use of data for social good, you’ll find out how far data science reaches. With this anthology, you’ll learn how: Analysts can now get results from their data queries in near real time Indie manufacturers are blurring the lines between hardware and software Companies try to balance their desire for rapid innovation with the need to tighten data security Advanced analytics and low-cost sensors are transforming equipment maintenance from a cost center to a profit center CIOs have gradually evolved from order takers to business innovators New analytics tools let businesses go beyond data analysis and straight to decision-making Mike Barlow is an award-winning journalist, author, and communications strategy consultant. Since launching his own firm, Cumulus Partners, he has represented major organizations in a number of industries.

Machine Learning And Data Science

Author : Daniel D. Gutierrez
ISBN : 9781634620987
Genre : Computers
File Size : 44. 73 MB
Format : PDF, ePub
Download : 972
Read : 382

Get This Book


A practitioner’s tools have a direct impact on the success of his or her work. This book will provide the data scientist with the tools and techniques required to excel with statistical learning methods in the areas of data access, data munging, exploratory data analysis, supervised machine learning, unsupervised machine learning and model evaluation. Machine learning and data science are large disciplines, requiring years of study in order to gain proficiency. This book can be viewed as a set of essential tools we need for a long-term career in the data science field – recommendations are provided for further study in order to build advanced skills in tackling important data problem domains. The R statistical environment was chosen for use in this book. R is a growing phenomenon worldwide, with many data scientists using it exclusively for their project work. All of the code examples for the book are written in R. In addition, many popular R packages and data sets will be used.

Statistical Learning And Data Science

Author : Mireille Gettler Summa
ISBN : 9781439867648
Genre : Business & Economics
File Size : 90. 19 MB
Format : PDF
Download : 525
Read : 274

Get This Book


Data analysis is changing fast. Driven by a vast range of application domains and affordable tools, machine learning has become mainstream. Unsupervised data analysis, including cluster analysis, factor analysis, and low dimensionality mapping methods continually being updated, have reached new heights of achievement in the incredibly rich data world that we inhabit. Statistical Learning and Data Science is a work of reference in the rapidly evolving context of converging methodologies. It gathers contributions from some of the foundational thinkers in the different fields of data analysis to the major theoretical results in the domain. On the methodological front, the volume includes conformal prediction and frameworks for assessing confidence in outputs, together with attendant risk. It illustrates a wide range of applications, including semantics, credit risk, energy production, genomics, and ecology. The book also addresses issues of origin and evolutions in the unsupervised data analysis arena, and presents some approaches for time series, symbolic data, and functional data. Over the history of multidimensional data analysis, more and more complex data have become available for processing. Supervised machine learning, semi-supervised analysis approaches, and unsupervised data analysis, provide great capability for addressing the digital data deluge. Exploring the foundations and recent breakthroughs in the field, Statistical Learning and Data Science demonstrates how data analysis can improve personal and collective health and the well-being of our social, business, and physical environments.

Data Science For Dummies

Author : Lillian Pierson
ISBN : 9781119327653
Genre : Computers
File Size : 74. 31 MB
Format : PDF, Mobi
Download : 790
Read : 993

Get This Book


Discover how data science can help you gain in-depth insight into your business - the easy way! Jobs in data science abound, but few people have the data science skills needed to fill these increasingly important roles. Data Science For Dummies is the perfect starting point for IT professionals and students who want a quick primer on all areas of the expansive data science space. With a focus on business cases, the book explores topics in big data, data science, and data engineering, and how these three areas are combined to produce tremendous value. If you want to pick-up the skills you need to begin a new career or initiate a new project, reading this book will help you understand what technologies, programming languages, and mathematical methods on which to focus. While this book serves as a wildly fantastic guide through the broad, sometimes intimidating field of big data and data science, it is not an instruction manual for hands-on implementation. Here’s what to expect: Provides a background in big data and data engineering before moving on to data science and how it's applied to generate value Includes coverage of big data frameworks like Hadoop, MapReduce, Spark, MPP platforms, and NoSQL Explains machine learning and many of its algorithms as well as artificial intelligence and the evolution of the Internet of Things Details data visualization techniques that can be used to showcase, summarize, and communicate the data insights you generate It's a big, big data world out there—let Data Science For Dummies help you harness its power and gain a competitive edge for your organization.

Data Science In Higher Education

Author : Jesse Lawson
ISBN : 1515206467
Genre :
File Size : 35. 45 MB
Format : PDF
Download : 316
Read : 765

Get This Book


Be the Change your Institution Needs What are leaders in research saying about Data Science in Higher Education? "Where has this book been all these years? This is THE starting point for researchers looking for a leg up in today's college environment. Two parts discussion, one part methodology, and one part witty humor. I love it!" "Buy this book for your analysts. They and your college will thank you." "This is the only book on data science specific for higher education research that covers both theory and practice. I'm not a programmer at all, and I found this book very enjoyable. You wont regret it -- I know I don't!" "When our department was tasked with coming up with a predictive 'machine-learning' model, we hired Jesse to help us. His charisma and knowledge are unmatched, and this book only helps to breathe fresh life into issues in research today that are all too often swept under the rug." Discover the tools to take your institution to the next level! Data Science in higher education is the process of turning raw institutional data into actionable intelligence. With this introduction to foundational topics in machine learning and predictive analytics, ambitious leaders in research can develop and employ sophisticated predictive models to better inform their institution's decision-making process. You don't need an advanced degree in math or statistics to do data science. With the open-source statistical programming language R, you'll learn how to tackle real-life institutional data challenges (with actual institutional data!) by going step-by-step through different case studies. Topics include: Simple, Multiple, & Logistic Regression Techniques, and Naive Bayes Classifiers Best Practices for Data Scientists in Higher Education Narrative-style stories, gotchas, and insights from actual data science jobs at colleges and universities "Forget the textbooks. This is a book on data science written for institutional researchers *by* an institutional researcher. You need this book."------------------------------------------ Data Science is the art of carefully picking through that pile of book pages and putting together a complete book. It's the art of developing a narrative for your data, so that all the raw information that your institution warehouses and reports in bar charts and histograms is replaced with actionable intelligence. Here's what we know: Data science can and should be an integral part of college and university operations. Institutional effectiveness should be working side-by-side with faculty and educators to collect, clean, and mine through data of current and past students' behaviors in order to better empower counseling and advisement services (whether virtual or otherwise). Data itself should be considered an asset to an institution, and the data mining process a necessary function of institutional operations. So how do we do it? It starts with a solid perspective and great research tools. With Data Science in Higher Education you'll learn about and solve real-world institutional problems with open-source tools and machine learning research techniques. Using R, you'll tackle case studies from real colleges and develop predictive analytical solutions to problems that colleges and universities face to this day.

The Data Science Handbook

Author : Field Cady
ISBN : 9781119092940
Genre : Mathematics
File Size : 70. 96 MB
Format : PDF
Download : 894
Read : 306

Get This Book


A comprehensive overview of data science covering the analytics, programming, and business skills necessary to master the discipline Finding a good data scientist has been likened to hunting for a unicorn: the required combination of technical skills is simply very hard to find in one person. In addition, good data science is not just rote application of trainable skill sets; it requires the ability to think flexibly about all these areas and understand the connections between them. This book provides a crash course in data science, combining all the necessary skills into a unified discipline. Unlike many analytics books, computer science and software engineering are given extensive coverage since they play such a central role in the daily work of a data scientist. The author also describes classic machine learning algorithms, from their mathematical foundations to real-world applications. Visualization tools are reviewed, and their central importance in data science is highlighted. Classical statistics is addressed to help readers think critically about the interpretation of data and its common pitfalls. The clear communication of technical results, which is perhaps the most undertrained of data science skills, is given its own chapter, and all topics are explained in the context of solving real-world data problems. The book also features: • Extensive sample code and tutorials using Python™ along with its technical libraries • Core technologies of “Big Data,” including their strengths and limitations and how they can be used to solve real-world problems • Coverage of the practical realities of the tools, keeping theory to a minimum; however, when theory is presented, it is done in an intuitive way to encourage critical thinking and creativity • A wide variety of case studies from industry • Practical advice on the realities of being a data scientist today, including the overall workflow, where time is spent, the types of datasets worked on, and the skill sets needed The Data Science Handbook is an ideal resource for data analysis methodology and big data software tools. The book is appropriate for people who want to practice data science, but lack the required skill sets. This includes software professionals who need to better understand analytics and statisticians who need to understand software. Modern data science is a unified discipline, and it is presented as such. This book is also an appropriate reference for researchers and entry-level graduate students who need to learn real-world analytics and expand their skill set. FIELD CADY is the data scientist at the Allen Institute for Artificial Intelligence, where he develops tools that use machine learning to mine scientific literature. He has also worked at Google and several Big Data startups. He has a BS in physics and math from Stanford University, and an MS in computer science from Carnegie Mellon.

Targeted Learning In Data Science

Author : Mark J. van der Laan
ISBN : 9783319653044
Genre : Mathematics
File Size : 48. 48 MB
Format : PDF, ePub, Mobi
Download : 326
Read : 972

Get This Book


This textbook for graduate students in statistics, data science, and public health deals with the practical challenges that come with big, complex, and dynamic data. It presents a scientific roadmap to translate real-world data science applications into formal statistical estimation problems by using the general template of targeted maximum likelihood estimators. These targeted machine learning algorithms estimate quantities of interest while still providing valid inference. Targeted learning methods within data science area critical component for solving scientific problems in the modern age. The techniques can answer complex questions including optimal rules for assigning treatment based on longitudinal data with time-dependent confounding, as well as other estimands in dependent data structures, such as networks. Included in Targeted Learning in Data Science are demonstrations with soft ware packages and real data sets that present a case that targeted learning is crucial for the next generation of statisticians and data scientists. Th is book is a sequel to the first textbook on machine learning for causal inference, Targeted Learning, published in 2011. Mark van der Laan, PhD, is Jiann-Ping Hsu/Karl E. Peace Professor of Biostatistics and Statistics at UC Berkeley. His research interests include statistical methods in genomics, survival analysis, censored data, machine learning, semiparametric models, causal inference, and targeted learning. Dr. van der Laan received the 2004 Mortimer Spiegelman Award, the 2005 Van Dantzig Award, the 2005 COPSS Snedecor Award, the 2005 COPSS Presidential Award, and has graduated over 40 PhD students in biostatistics and statistics. Sherri Rose, PhD, is Associate Professor of Health Care Policy (Biostatistics) at Harvard Medical School. Her work is centered on developing and integrating innovative statistical approaches to advance human health. Dr. Rose’s methodological research focuses on nonparametric machine learning for causal inference and prediction. She co-leads the Health Policy Data Science Lab and currently serves as an associate editor for the Journal of the American Statistical Association and Biostatistics.

Data Science From Scratch

Author : Joel Grus
ISBN : 9781491904404
Genre : BUSINESS & ECONOMICS
File Size : 26. 96 MB
Format : PDF
Download : 99
Read : 462

Get This Book


Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Spiders

Author : Lynne Kelly
ISBN : 1741761875
Genre : Nature
File Size : 49. 52 MB
Format : PDF, ePub, Mobi
Download : 381
Read : 879

Get This Book


"Yet again I was screaming in the night" is the opening sentence in this book. The author decided to deliberately overcome her fear of spiders by observing and studying them, and learning as much as she could about them. As well as being an authoritative book on spiders this book is a personal account of how the author came to love them; and how any other arachnophobe can do the same."--provided by publisher.

Hands On Data Science And Python Machine Learning

Author : Frank Kane
ISBN : 9781787280229
Genre : Computers
File Size : 52. 20 MB
Format : PDF, Kindle
Download : 764
Read : 1184

Get This Book


This book covers the fundamentals of machine learning with Python in a concise and dynamic manner. It covers data mining and large-scale machine learning using Apache Spark. About This Book Take your first steps in the world of data science by understanding the tools and techniques of data analysis Train efficient Machine Learning models in Python using the supervised and unsupervised learning methods Learn how to use Apache Spark for processing Big Data efficiently Who This Book Is For If you are a budding data scientist or a data analyst who wants to analyze and gain actionable insights from data using Python, this book is for you. Programmers with some experience in Python who want to enter the lucrative world of Data Science will also find this book to be very useful, but you don't need to be an expert Python coder or mathematician to get the most from this book. What You Will Learn Learn how to clean your data and ready it for analysis Implement the popular clustering and regression methods in Python Train efficient machine learning models using decision trees and random forests Visualize the results of your analysis using Python's Matplotlib library Use Apache Spark's MLlib package to perform machine learning on large datasets In Detail Join Frank Kane, who worked on Amazon and IMDb's machine learning algorithms, as he guides you on your first steps into the world of data science. Hands-On Data Science and Python Machine Learning gives you the tools that you need to understand and explore the core topics in the field, and the confidence and practice to build and analyze your own machine learning models. With the help of interesting and easy-to-follow practical examples, Frank Kane explains potentially complex topics such as Bayesian methods and K-means clustering in a way that anybody can understand them. Based on Frank's successful data science course, Hands-On Data Science and Python Machine Learning empowers you to conduct data analysis and perform efficient machine learning using Python. Let Frank help you unearth the value in your data using the various data mining and data analysis techniques available in Python, and to develop efficient predictive models to predict future results. You will also learn how to perform large-scale machine learning on Big Data using Apache Spark. The book covers preparing your data for analysis, training machine learning models, and visualizing the final data analysis. Style and approach This comprehensive book is a perfect blend of theory and hands-on code examples in Python which can be used for your reference at any time.

Top Download:

Best Books