# linear algebra through geometry

**Download Book Linear Algebra Through Geometry in PDF format. You can Read Online Linear Algebra Through Geometry here in PDF, EPUB, Mobi or Docx formats.**

## Linear Algebra Through Geometry

**Author :**Thomas Banchoff

**ISBN :**9781461243908

**Genre :**Mathematics

**File Size :**26. 26 MB

**Format :**PDF, Kindle

**Download :**464

**Read :**1131

This book introduces the concepts of linear algebra through the careful study of two and three-dimensional Euclidean geometry. This approach makes it possible to start with vectors, linear transformations, and matrices in the context of familiar plane geometry and to move directly to topics such as dot products, determinants, eigenvalues, and quadratic forms. The later chapters deal with n-dimensional Euclidean space and other finite-dimensional vector space.

## Linear Algebra And Geometry

**Author :**Igor R. Shafarevich

**ISBN :**9783642309946

**Genre :**Mathematics

**File Size :**86. 9 MB

**Format :**PDF

**Download :**349

**Read :**540

This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics.

## Linear Algebra And Geometry

**Author :**Irving Kaplansky

**ISBN :**0486432335

**Genre :**Mathematics

**File Size :**49. 51 MB

**Format :**PDF, ePub

**Download :**375

**Read :**582

The author of this text seeks to remedy a common failing in teaching algebra: the neglect of related instruction in geometry. Focusing on inner product spaces, orthogonal similarity, and elements of geometry, this volume is illustrated with an abundance of examples, exercises, and proofs and is suitable for both undergraduate and graduate courses. 1974 edition.

## Linear Algebra Via Exterior Products

**Author :**Sergei Winitzki

**ISBN :**9781409294962

**Genre :**

**File Size :**45. 65 MB

**Format :**PDF, ePub, Mobi

**Download :**947

**Read :**1228

This is a pedagogical introduction to the coordinate-free approach in basic finite-dimensional linear algebra. The reader should be already exposed to the array-based formalism of vector and matrix calculations. This book makes extensive use of the exterior (anti-commutative, "wedge") product of vectors. The coordinate-free formalism and the exterior product, while somewhat more abstract, provide a deeper understanding of the classical results in linear algebra. Without cumbersome matrix calculations, this text derives the standard properties of determinants, the Pythagorean formula for multidimensional volumes, the formulas of Jacobi and Liouville, the Cayley-Hamilton theorem, the Jordan canonical form, the properties of Pfaffians, as well as some generalizations of these results.

## Linear Algebra And Projective Geometry

**Author :**Reinhold Baer

**ISBN :**9780486154664

**Genre :**Mathematics

**File Size :**82. 54 MB

**Format :**PDF

**Download :**117

**Read :**1283

Geared toward upper-level undergraduates and graduate students, this text establishes that projective geometry and linear algebra are essentially identical. The supporting evidence consists of theorems offering an algebraic demonstration of certain geometric concepts. 1952 edition.

## Practical Linear Algebra

**Author :**Gerald Farin

**ISBN :**9781498759779

**Genre :**Computers

**File Size :**85. 44 MB

**Format :**PDF

**Download :**506

**Read :**948

Through many examples and real-world applications, Practical Linear Algebra: A Geometry Toolbox, Third Edition teaches undergraduate-level linear algebra in a comprehensive, geometric, and algorithmic way. Designed for a one-semester linear algebra course at the undergraduate level, the book gives instructors the option of tailoring the course for the primary interests: math, engineering, science, computer graphics, and geometric modeling. New to the Third Edition More exercises and applications Coverage of singular value decomposition and its application to the pseudoinverse, principal components analysis, and image compression More attention to eigen-analysis, including eigenfunctions and the Google matrix Greater emphasis on orthogonal projections and matrix decompositions, which are tied to repeated themes such as the concept of least squares To help students better visualize and understand the material, the authors introduce the fundamental concepts of linear algebra first in a two-dimensional setting and then revisit these concepts and others in a three-dimensional setting. They also discuss higher dimensions in various real-life applications. Triangles, polygons, conics, and curves are introduced as central applications of linear algebra. Instead of using the standard theorem-proof approach, the text presents many examples and instructional illustrations to help students develop a robust, intuitive understanding of the underlying concepts. The authors’ website also offers the illustrations for download and includes Mathematica® code and other ancillary materials.

## Geometric Linear Algebra

**Author :**I-Hsiung Lin

**ISBN :**9789812707758

**Genre :**Mathematics

**File Size :**57. 81 MB

**Format :**PDF, Mobi

**Download :**263

**Read :**367

This accessible book for beginners uses intuitive geometric concepts to create abstract algebraic theory with a special emphasis on geometric characterizations. The book applies known results to describe various geometries and their invariants, and presents problems concerned with linear algebra, such as in real and complex analysis, differential equations, differentiable manifolds, differential geometry, Markov chains and transformation groups. The clear and inductive approach makes this book unique among existing books on linear algebra both in presentation and in content.

## Geometric Algebra For Computer Science

**Author :**Leo Dorst

**ISBN :**9780080553108

**Genre :**Computers

**File Size :**81. 92 MB

**Format :**PDF

**Download :**611

**Read :**631

Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA

## Linear Algebra

**Author :**E. Sernesi

**ISBN :**0412406802

**Genre :**Mathematics

**File Size :**45. 25 MB

**Format :**PDF, ePub, Mobi

**Download :**732

**Read :**609

This is an undergraduate textbook suitable for linear algebra courses. This is the only textbook that develops the linear algebra hand-in-hand with the geometry of linear (or affine) spaces in such a way that the understanding of each reinforces the other. The text is divided into two parts: Part I is on linear algebra and affine geometry, finishing with a chapter on transformation groups; Part II is on quadratic forms and their geometry (Euclidean geometry), including a chapter on finite subgroups of 0 (2). Each of the 23 chapters concludes with a generous helping of exercises, and a selection of these have solutions at the end of the book. The chapters also contain many examples, both numerical worked examples (mostly in 2 and 3 dimensions), as well as examples which take some of the ideas further. Many of the chapters contain "complements" which develop more special topics, and which can be omitted on a first reading. The structure of the book is designed to allow as much flexibility as possible in designing a course, either by omitting whole chapters or by omitting the "complements" or specific examples.

## Differential Geometry Of Curves And Surfaces Second Edition

**Author :**Thomas F. Banchoff

**ISBN :**9781482247374

**Genre :**Mathematics

**File Size :**58. 42 MB

**Format :**PDF

**Download :**531

**Read :**1205

Differential Geometry of Curves and Surfaces, Second Edition takes both an analytical/theoretical approach and a visual/intuitive approach to the local and global properties of curves and surfaces. Requiring only multivariable calculus and linear algebra, it develops students’ geometric intuition through interactive computer graphics applets supported by sound theory. The book explains the reasons for various definitions while the interactive applets offer motivation for certain definitions, allow students to explore examples further, and give a visual explanation of complicated theorems. The ability to change parametric curves and parametrized surfaces in an applet lets students probe the concepts far beyond what static text permits. New to the Second Edition Reworked presentation to make it more approachable More exercises, both introductory and advanced New section on the application of differential geometry to cartography Additional investigative project ideas Significantly reorganized material on the Gauss–Bonnet theorem Two new sections dedicated to hyperbolic and spherical geometry as applications of intrinsic geometry A new chapter on curves and surfaces in Rn Suitable for an undergraduate-level course or self-study, this self-contained textbook and online software applets provide students with a rigorous yet intuitive introduction to the field of differential geometry. The text gives a detailed introduction of definitions, theorems, and proofs and includes many types of exercises appropriate for daily or weekly assignments. The applets can be used for computer labs, in-class illustrations, exploratory exercises, or self-study aids.