# linear integral equations theory and technique

**Download Book Linear Integral Equations Theory And Technique in PDF format. You can Read Online Linear Integral Equations Theory And Technique here in PDF, EPUB, Mobi or Docx formats.**

## Linear Integral Equations

**Author :**Ram P. Kanwal

**ISBN :**9781461460121

**Genre :**Mathematics

**File Size :**51. 82 MB

**Format :**PDF, Docs

**Download :**984

**Read :**807

Many physical problems that are usually solved by differential equation methods can be solved more effectively by integral equation methods. Such problems abound in applied mathematics, theoretical mechanics, and mathematical physics. This uncorrected soft cover reprint of the second edition places the emphasis on applications and presents a variety of techniques with extensive examples.Originally published in 1971, Linear Integral Equations is ideal as a text for a beginning graduate level course. Its treatment of boundary value problems also makes the book useful to researchers in many applied fields.

## Linear Integral Equations

**Author :**Ram P. Kanwal

**ISBN :**9781483262505

**Genre :**Mathematics

**File Size :**70. 37 MB

**Format :**PDF, ePub, Docs

**Download :**372

**Read :**889

Linear Integral Equations: Theory and Technique is an 11-chapter text that covers the theoretical and methodological aspects of linear integral equations. After a brief overview of the fundamentals of the equations, this book goes on dealing with specific integral equations with separable kernels and a method of successive approximations. The next chapters explore the properties of classical Fredholm theory and the applications of linear integral equations to ordinary and partial differential equations. These topics are followed by discussions of the symmetric kernels, singular integral equations, and the integral transform methods. The final chapters consider the applications of linear integral equations to mixed boundary value problems. These chapters also look into the integral equation perturbation methods. This book will be of value to undergraduate and graduate students in applied mathematics, theoretical mechanics, and mathematical physics.

## Linear Integral Equations

**Author :**Ram P. Kanwal

**ISBN :**9781461207658

**Genre :**Mathematics

**File Size :**29. 63 MB

**Format :**PDF, Mobi

**Download :**529

**Read :**893

This second edition of Linear Integral Equations continues the emphasis that the first edition placed on applications. Indeed, many more examples have been added throughout the text. Significant new material has been added in Chapters 6 and 8. For instance, in Chapter 8 we have included the solutions of the Cauchy type integral equations on the real line. Also, there is a section on integral equations with a logarithmic kernel. The bibliography at the end of the book has been exteded and brought up to date. I wish to thank Professor B.K. Sachdeva who has checked the revised man uscript and has suggested many improvements. Last but not least, I am grateful to the editor and staff of Birkhauser for inviting me to prepare this new edition and for their support in preparing it for publication. RamP Kanwal CHAYfERl Introduction 1.1. Definition An integral equation is an equation in which an unknown function appears under one or more integral signs Naturally, in such an equation there can occur other terms as well. For example, for a ~ s ~ b; a :( t :( b, the equations (1.1.1) f(s) = ib K(s, t)g(t)dt, g(s) = f(s) + ib K(s, t)g(t)dt, (1.1.2) g(s) = ib K(s, t)[g(t)fdt, (1.1.3) where the function g(s) is the unknown function and all the other functions are known, are integral equations. These functions may be complex-valued functions of the real variables s and t.

## Linear Integral Equations

**Author :**Ram P. Kanwal

**ISBN :**9780817639402

**Genre :**Mathematics

**File Size :**62. 11 MB

**Format :**PDF, ePub, Docs

**Download :**272

**Read :**1013

"This second edition of this highly useful book continues the emphasis on applications and presents a variety of techniques with extensive examples...The book is ideal as a text for a beginning graduate course. Its excellent treatment of boundary value problems and an up-to-date bibliography make the book equally useful for researchers in many applied fields." ---MathSciNet

## Integral Equations

**Author :**Wolfgang Hackbusch

**ISBN :**9783034892155

**Genre :**Mathematics

**File Size :**77. 20 MB

**Format :**PDF, Mobi

**Download :**330

**Read :**162

The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis. On the other hand, integral equations are of practical interest because of the Â«boundary integral equation methodÂ», which transforms partial differential equations on a domain into integral equations over its boundary. This book grew out of a series of lectures given by the author at the Ruhr-Universitat Bochum and the Christian-Albrecht-Universitat zu Kiel to students of mathematics. The contents of the first six chapters correspond to an intensive lecture course of four hours per week for a semester. Readers of the book require background from analysis and the foundations of numeri cal mathematics. Knowledge of functional analysis is helpful, but to begin with some basic facts about Banach and Hilbert spaces are sufficient. The theoretical part of this book is reduced to a minimum; in Chapters 2, 4, and 5 more importance is attached to the numerical treatment of the integral equations than to their theory. Important parts of functional analysis (e. g. , the Riesz-Schauder theory) are presented without proof. We expect the reader either to be already familiar with functional analysis or to become motivated by the practical examples given here to read a book about this topic. We recall that also from a historical point of view, functional analysis was initially stimulated by the investigation of integral equations.

## Singular Integral Equations

**Author :**Ricardo Estrada

**ISBN :**9781461213826

**Genre :**Mathematics

**File Size :**41. 89 MB

**Format :**PDF, Mobi

**Download :**360

**Read :**685

Many physical problems that are usually solved by differential equation techniques can be solved more effectively by integral equation methods. This work focuses exclusively on singular integral equations and on the distributional solutions of these equations. A large number of beautiful mathematical concepts are required to find such solutions, which in tum, can be applied to a wide variety of scientific fields - potential theory, me chanics, fluid dynamics, scattering of acoustic, electromagnetic and earth quake waves, statistics, and population dynamics, to cite just several. An integral equation is said to be singular if the kernel is singular within the range of integration, or if one or both limits of integration are infinite. The singular integral equations that we have studied extensively in this book are of the following type. In these equations f (x) is a given function and g(y) is the unknown function. 1. The Abel equation x x) = l g (y) d 0

## Introduction To Integral Equations With Applications

**Author :**A. Jerri

**ISBN :**0471317349

**Genre :**Mathematics

**File Size :**77. 66 MB

**Format :**PDF, Docs

**Download :**890

**Read :**1138

From the reviews of the First Edition: "Extremely clear, self-contained text . . . offers to a wide class of readers the theoretical foundations and the modern numerical methods of the theory of linear integral equations."-Revue Roumaine de Mathematiques Pures et Appliqu?es. Abdul Jerri has revised his highly applied book to make it even more useful for scientists and engineers, as well as mathematicians. Covering the fundamental ideas and techniques at a level accessible to anyone with a solid undergraduate background in calculus and differential equations, Dr. Jerri clearly demonstrates how to use integral equations to solve real-world engineering and physics problems. This edition provides precise guidelines to the basic methods of solutions, details more varied numerical methods, and substantially boosts the total of practical examples and exercises. Plus, it features added emphasis on the basic theorems for the existence and uniqueness of solutions of integral equations and points out the interrelation between differentiation and integration. Other features include: * A new section on integral equations in higher dimensions. * An improved presentation of the Laplace and Fourier transforms. * A new detailed section for Fredholm integral equations of the first kind. * A new chapter covering the basic higher quadrature numerical integration rules. * A concise introduction to linear and nonlinear integral equations. * Clear examples of singular integral equations and their solutions. * A student's solutions manual available directly from the author.

## Integral Equations

**Author :**Harry Hochstadt

**ISBN :**9781118165935

**Genre :**Mathematics

**File Size :**78. 2 MB

**Format :**PDF, ePub, Docs

**Download :**527

**Read :**861

This classic work is now available in an unabridged paperback edition. Hochstatdt's concise treatment of integral equations represents the best compromise between the detailed classical approach and the faster functional analytic approach, while developing the most desirable features of each. The seven chapters present an introduction to integral equations, elementary techniques, the theory of compact operators, applications to boundary value problems in more than dimension, a complete treatment of numerous transform techniques, a development of the classical Fredholm technique, and application of the Schauder fixed point theorem to nonlinear equations.

## Partial Differential Equations

**Author :**George F. Carrier

**ISBN :**9781483259161

**Genre :**Mathematics

**File Size :**40. 97 MB

**Format :**PDF, Docs

**Download :**964

**Read :**337

Partial Differential Equations: Theory and Technique provides formal definitions, notational conventions, and a systematic discussion of partial differential equations. The text emphasizes the acquisition of practical technique in the use of partial differential equations. The book contains discussions on classical second-order equations of diffusion, wave motion, first-order linear and quasi-linear equations, and potential theory. Certain chapters elaborate Green's functions, eigenvalue problems, practical approximation techniques, perturbations (regular and singular), difference equations, and numerical methods. Students of mathematics will find the book very useful.

## Lectures On Integral Equations

**Author :**Harold Widom

**ISBN :**9780486810270

**Genre :**Mathematics

**File Size :**45. 97 MB

**Format :**PDF, Kindle

**Download :**335

**Read :**429

This concise and classic volume presents the main results of integral equation theory as consequences of the theory of operators on Banach and Hilbert spaces. In addition, it offers a brief account of Fredholm's original approach. The self-contained treatment requires only some familiarity with elementary real variable theory, including the elements of Lebesgue integration, and is suitable for advanced undergraduates and graduate students of mathematics. Other material discusses applications to second order linear differential equations, and a final chapter uses Fourier integral techniques to investigate certain singular integral equations of interest for physical applications as well as for their own sake. A helpful index concludes the text.