# linear integral equations theory and technique

**Download Book Linear Integral Equations Theory And Technique in PDF format. You can Read Online Linear Integral Equations Theory And Technique here in PDF, EPUB, Mobi or Docx formats.**

## Linear Integral Equations

**Author :**Ram P. Kanwal

**ISBN :**9781461460121

**Genre :**Mathematics

**File Size :**24. 81 MB

**Format :**PDF, ePub

**Download :**292

**Read :**217

Many physical problems that are usually solved by differential equation methods can be solved more effectively by integral equation methods. Such problems abound in applied mathematics, theoretical mechanics, and mathematical physics. This uncorrected soft cover reprint of the second edition places the emphasis on applications and presents a variety of techniques with extensive examples.Originally published in 1971, Linear Integral Equations is ideal as a text for a beginning graduate level course. Its treatment of boundary value problems also makes the book useful to researchers in many applied fields.

## Linear Integral Equations

**Author :**Ram P. Kanwal

**ISBN :**9781483262505

**Genre :**Mathematics

**File Size :**88. 78 MB

**Format :**PDF, Docs

**Download :**171

**Read :**1323

Linear Integral Equations: Theory and Technique is an 11-chapter text that covers the theoretical and methodological aspects of linear integral equations. After a brief overview of the fundamentals of the equations, this book goes on dealing with specific integral equations with separable kernels and a method of successive approximations. The next chapters explore the properties of classical Fredholm theory and the applications of linear integral equations to ordinary and partial differential equations. These topics are followed by discussions of the symmetric kernels, singular integral equations, and the integral transform methods. The final chapters consider the applications of linear integral equations to mixed boundary value problems. These chapters also look into the integral equation perturbation methods. This book will be of value to undergraduate and graduate students in applied mathematics, theoretical mechanics, and mathematical physics.

## Lectures On Integral Equations

**Author :**Harold Widom

**ISBN :**9780486810270

**Genre :**Mathematics

**File Size :**76. 45 MB

**Format :**PDF

**Download :**497

**Read :**203

This concise and classic volume presents the main results of integral equation theory as consequences of the theory of operators on Banach and Hilbert spaces. In addition, it offers a brief account of Fredholm's original approach. The self-contained treatment requires only some familiarity with elementary real variable theory, including the elements of Lebesgue integration, and is suitable for advanced undergraduates and graduate students of mathematics. Other material discusses applications to second order linear differential equations, and a final chapter uses Fourier integral techniques to investigate certain singular integral equations of interest for physical applications as well as for their own sake. A helpful index concludes the text.

## Integral Equations

**Author :**Harry Hochstadt

**ISBN :**9781118165935

**Genre :**Mathematics

**File Size :**33. 79 MB

**Format :**PDF, Mobi

**Download :**763

**Read :**1163

This classic work is now available in an unabridged paperback edition. Hochstatdt's concise treatment of integral equations represents the best compromise between the detailed classical approach and the faster functional analytic approach, while developing the most desirable features of each. The seven chapters present an introduction to integral equations, elementary techniques, the theory of compact operators, applications to boundary value problems in more than dimension, a complete treatment of numerous transform techniques, a development of the classical Fredholm technique, and application of the Schauder fixed point theorem to nonlinear equations.

## Introduction To Integral Equations With Applications

**Author :**A. Jerri

**ISBN :**0471317349

**Genre :**Mathematics

**File Size :**29. 74 MB

**Format :**PDF, ePub, Mobi

**Download :**788

**Read :**698

From the reviews of the First Edition: "Extremely clear, self-contained text . . . offers to a wide class of readers the theoretical foundations and the modern numerical methods of the theory of linear integral equations."-Revue Roumaine de Mathematiques Pures et Appliqu?es. Abdul Jerri has revised his highly applied book to make it even more useful for scientists and engineers, as well as mathematicians. Covering the fundamental ideas and techniques at a level accessible to anyone with a solid undergraduate background in calculus and differential equations, Dr. Jerri clearly demonstrates how to use integral equations to solve real-world engineering and physics problems. This edition provides precise guidelines to the basic methods of solutions, details more varied numerical methods, and substantially boosts the total of practical examples and exercises. Plus, it features added emphasis on the basic theorems for the existence and uniqueness of solutions of integral equations and points out the interrelation between differentiation and integration. Other features include: * A new section on integral equations in higher dimensions. * An improved presentation of the Laplace and Fourier transforms. * A new detailed section for Fredholm integral equations of the first kind. * A new chapter covering the basic higher quadrature numerical integration rules. * A concise introduction to linear and nonlinear integral equations. * Clear examples of singular integral equations and their solutions. * A student's solutions manual available directly from the author.

## Numerical Solution Of Integral Equations

**Author :**Michael A. Golberg

**ISBN :**9781489925930

**Genre :**Mathematics

**File Size :**31. 55 MB

**Format :**PDF, Kindle

**Download :**552

**Read :**1280

In 1979, I edited Volume 18 in this series: Solution Methods for Integral Equations: Theory and Applications. Since that time, there has been an explosive growth in all aspects of the numerical solution of integral equations. By my estimate over 2000 papers on this subject have been published in the last decade, and more than 60 books on theory and applications have appeared. In particular, as can be seen in many of the chapters in this book, integral equation techniques are playing an increas ingly important role in the solution of many scientific and engineering problems. For instance, the boundary element method discussed by Atkinson in Chapter 1 is becoming an equal partner with finite element and finite difference techniques for solving many types of partial differential equations. Obviously, in one volume it would be impossible to present a complete picture of what has taken place in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its infancy. Today, as shown by Golberg and Elliott in Chapters 5 and 6, the theory of polynomial approximations is essentially complete, although many details of practical implementation remain to be worked out.

## Generalized Functions Theory And Technique

**Author :**Ram P. Kanwal

**ISBN :**0817640061

**Genre :**Mathematics

**File Size :**49. 84 MB

**Format :**PDF

**Download :**719

**Read :**881

This second edition of Generalized Functions has been strengthened in many ways. The already extensive set of examples has been expanded. Since the publication of the first edition, there has been tremendous growth in the subject and I have attempted to incorporate some of these new concepts. Accordingly, almost all the chapters have been revised. The bibliography has been enlarged considerably. Some of the material has been reorganized. For example, Chapters 12 and 13 of the first edition have been consolidated into Chapter 12 of this edition by a judicious process of elimination and addition of the subject matter. The new Chapter 13 explains the interplay between the theories of moments, asymptotics, and singular perturbations. Similarly, some sections of Chapter 15 have been revised and included in earlier chapters to improve the logical flow of ideas. However, two sections are retained. The section dealing with the application of the probability theory has been revised, and I am thankful to Professor Z.L. Crvenkovic for her help. The new material included in this chapter pertains to the modern topics of periodic distributions and microlocal theory. I have demonstrated through various examples that familiarity with the generalized functions is very helpful for students in physical sciences and technology. For instance, the reader will realize from Chapter 6 how the generalized functions have revolutionized the Fourier analysis which is being used extensively in many fields of scientific activity.

## Partial Differential Equations

**Author :**George F. Carrier

**ISBN :**9781483259161

**Genre :**Mathematics

**File Size :**86. 81 MB

**Format :**PDF, Docs

**Download :**918

**Read :**462

Partial Differential Equations: Theory and Technique provides formal definitions, notational conventions, and a systematic discussion of partial differential equations. The text emphasizes the acquisition of practical technique in the use of partial differential equations. The book contains discussions on classical second-order equations of diffusion, wave motion, first-order linear and quasi-linear equations, and potential theory. Certain chapters elaborate Green's functions, eigenvalue problems, practical approximation techniques, perturbations (regular and singular), difference equations, and numerical methods. Students of mathematics will find the book very useful.

## One Dimensional Linear Singular Integral Equations

**Author :**Israel Gohberg

**ISBN :**3764327960

**Genre :**Integral operators

**File Size :**33. 67 MB

**Format :**PDF, ePub, Mobi

**Download :**943

**Read :**246

## A Course On Integral Equations

**Author :**Allen C. Pipkin

**ISBN :**9781461244462

**Genre :**Mathematics

**File Size :**37. 44 MB

**Format :**PDF, Kindle

**Download :**886

**Read :**710

Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathe matical Sciences ( AMS) series, which will focus on advanced textbooks and research level monographs. Foreword This book is based on a one-semester course for graduate students in the physical sciences and applied mathematics. No great mathematical back ground is needed, but the student should be familiar with the theory of analytic functions of a complex variable. Since the course is on problem solving rather than theorem-proving, the main requirement is that the stu dent should be willing to work out a large number of specific examples.