logistic regression from introductory to advanced concepts and applications

Download Book Logistic Regression From Introductory To Advanced Concepts And Applications in PDF format. You can Read Online Logistic Regression From Introductory To Advanced Concepts And Applications here in PDF, EPUB, Mobi or Docx formats.

Logistic Regression

Author : Scott Menard
ISBN : 9781412974837
Genre : Social Science
File Size : 23. 29 MB
Format : PDF, Kindle
Download : 118
Read : 1132

Get This Book


Logistic Regression is designed for readers who have a background in statistics at least up to multiple linear regression, who want to analyze dichotomous, nominal, and ordinal dependent variables cross-sectionally and longitudinally.

Logistic Regression Inside And Out

Author : Jeffrey Strickland
ISBN : 9781365819155
Genre :
File Size : 22. 17 MB
Format : PDF, ePub
Download : 519
Read : 1008

Get This Book



Understanding Regression Analysis

Author : Larry D. Schroeder
ISBN : 0803927584
Genre : Medical
File Size : 55. 13 MB
Format : PDF, ePub, Mobi
Download : 531
Read : 360

Get This Book


The authors have provided beginners with a background to the frequently-used technique of linear regression. It is not intended to be a substitute for a course or textbook in statistics, but rather a stop-gap for students who encounter empirical work before undertaking a statistics course. It provides a heuristic explanation of the procedures and terms used in regression analysis and has been written at the most elementary level.

Logistic Regression

Author : Fred C. Pampel
ISBN : 9781452207612
Genre : Social Science
File Size : 81. 30 MB
Format : PDF, ePub, Mobi
Download : 262
Read : 1211

Get This Book


Pampel's book offers readers the first "nuts and bolts" approach to doing logistic regression through the use of careful explanations and worked-out examples. This book will enable readers to use and understand logistic regression techniques and will serve as a foundation for more advanced treatments of the topic.

Applied Logistic Regression Analysis

Author : Scott Menard
ISBN : 0761922083
Genre : Mathematics
File Size : 90. 63 MB
Format : PDF, Kindle
Download : 400
Read : 237

Get This Book


The focus in this Second Edition is on logistic regression models for individual level (but aggregate or grouped) data. Multiple cases for each possible combination of values of the predictors are considered in detail and examples using SAS and SPSS included. New to this edition: · More detailed consideration of grouped as opposed to casewise data throughout the book · Updated discussion of the properties and appropriate use of goodness of fit measures, R2 analogues, and indices of predictive efficiency · Discussion of the misuse of odds ratios to represent risk ratios, and of overdispersion and underdispersion for grouped data · Updated coverage of unordered and ordered polytomous logistic regression models.

Regression Basics

Author : Leo H. Kahane
ISBN : 9781483317106
Genre : Social Science
File Size : 33. 6 MB
Format : PDF, ePub, Docs
Download : 812
Read : 1105

Get This Book


Using a friendly, nontechnical approach, the Second Edition of Regression Basics introduces readers to the fundamentals of regression. Accessible to anyone with an introductory statistics background, this book builds from a simple two-variable model to a model of greater complexity. Author Leo H. Kahane weaves four engaging examples throughout the text to illustrate not only the techniques of regression but also how this empirical tool can be applied in creative ways to consider a broad array of topics. New to the Second Edition • Offers greater coverage of simple panel-data estimation: Because the availability of panel data has increased over the past decade, this new edition includes coverage of estimation with multiple cross-sections of data across time. • Provides an introductory discussion of omitted variables bias: As a problem that frequently arises, this issue is important for those new to regression analysis to understand. • Includes up-to-date advances: Chapter 7 is expanded to include recent developments in regression. • Uses a diverse selection of examples: Engaging examples illustrate the wide application of regression analysis from baseball salaries to presidential voting to British crime rates to U.S. abortion rates and more. • Includes more end-of-chapter problems: This edition offers new questions at the end of chapters that are based on the new examples woven through the book. • Illustrates examples using software programs: Appendix B now includes screenshots to further aid readers working with Microsoft Excel® and SPSS. Intended Audience This is an ideal core or supplemental text for advanced undergraduate and graduate courses such as Regression and Correlation, Sociological Research Methods, Quantitative Research Methods, and Statistical Methods in the fields of economics, public policy, political science, sociology, public affairs, urban planning, education, and geography.

Introductory Statistics With R

Author : Peter Dalgaard
ISBN : 9780387790541
Genre : Mathematics
File Size : 35. 27 MB
Format : PDF, ePub
Download : 608
Read : 488

Get This Book


This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.

Applications Of Regression Models In Epidemiology

Author : Erick Suárez
ISBN : 9781119212485
Genre : Mathematics
File Size : 87. 15 MB
Format : PDF, ePub
Download : 390
Read : 778

Get This Book


A one-stop guide for public health students and practitioners learning the applications of classical regression models in epidemiology This book is written for public health professionals and students interested in applying regression models in the field of epidemiology. The academic material is usually covered in public health courses including (i) Applied Regression Analysis, (ii) Advanced Epidemiology, and (iii) Statistical Computing. The book is composed of 13 chapters, including an introduction chapter that covers basic concepts of statistics and probability. Among the topics covered are linear regression model, polynomial regression model, weighted least squares, methods for selecting the best regression equation, and generalized linear models and their applications to different epidemiological study designs. An example is provided in each chapter that applies the theoretical aspects presented in that chapter. In addition, exercises are included and the final chapter is devoted to the solutions of these academic exercises with answers in all of the major statistical software packages, including STATA, SAS, SPSS, and R. It is assumed that readers of this book have a basic course in biostatistics, epidemiology, and introductory calculus. The book will be of interest to anyone looking to understand the statistical fundamentals to support quantitative research in public health. In addition, this book: • Is based on the authors’ course notes from 20 years teaching regression modeling in public health courses • Provides exercises at the end of each chapter • Contains a solutions chapter with answers in STATA, SAS, SPSS, and R • Provides real-world public health applications of the theoretical aspects contained in the chapters Applications of Regression Models in Epidemiology is a reference for graduate students in public health and public health practitioners. ERICK SUÁREZ is a Professor of the Department of Biostatistics and Epidemiology at the University of Puerto Rico School of Public Health. He received a Ph.D. degree in Medical Statistics from the London School of Hygiene and Tropical Medicine. He has 29 years of experience teaching biostatistics. CYNTHIA M. PÉREZ is a Professor of the Department of Biostatistics and Epidemiology at the University of Puerto Rico School of Public Health. She received an M.S. degree in Statistics and a Ph.D. degree in Epidemiology from Purdue University. She has 22 years of experience teaching epidemiology and biostatistics. ROBERTO RIVERA is an Associate Professor at the College of Business at the University of Puerto Rico at Mayaguez. He received a Ph.D. degree in Statistics from the University of California in Santa Barbara. He has more than five years of experience teaching statistics courses at the undergraduate and graduate levels. MELISSA N. MARTÍNEZ is an Account Supervisor at Havas Media International. She holds an MPH in Biostatistics from the University of Puerto Rico and an MSBA from the National University in San Diego, California. For the past seven years, she has been performing analyses for the biomedical research and media advertising fields.

An Introduction To Statistical Learning

Author : Gareth James
ISBN : 9781461471387
Genre : Mathematics
File Size : 26. 95 MB
Format : PDF, Mobi
Download : 905
Read : 1223

Get This Book


An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Understanding Advanced Statistical Methods

Author : Peter Westfall
ISBN : 9781466512108
Genre : Mathematics
File Size : 64. 53 MB
Format : PDF, Kindle
Download : 882
Read : 673

Get This Book


Providing a much-needed bridge between elementary statistics courses and advanced research methods courses, Understanding Advanced Statistical Methods helps students grasp the fundamental assumptions and machinery behind sophisticated statistical topics, such as logistic regression, maximum likelihood, bootstrapping, nonparametrics, and Bayesian methods. The book teaches students how to properly model, think critically, and design their own studies to avoid common errors. It leads them to think differently not only about math and statistics but also about general research and the scientific method. With a focus on statistical models as producers of data, the book enables students to more easily understand the machinery of advanced statistics. It also downplays the "population" interpretation of statistical models and presents Bayesian methods before frequentist ones. Requiring no prior calculus experience, the text employs a "just-in-time" approach that introduces mathematical topics, including calculus, where needed. Formulas throughout the text are used to explain why calculus and probability are essential in statistical modeling. The authors also intuitively explain the theory and logic behind real data analysis, incorporating a range of application examples from the social, economic, biological, medical, physical, and engineering sciences. Enabling your students to answer the why behind statistical methods, this text teaches them how to successfully draw conclusions when the premises are flawed. It empowers them to use advanced statistical methods with confidence and develop their own statistical recipes. Ancillary materials are available on the book’s website.

Top Download:

Best Books