machine learning for the web

Download Book Machine Learning For The Web in PDF format. You can Read Online Machine Learning For The Web here in PDF, EPUB, Mobi or Docx formats.

Machine Learning For The Web

Author : Andrea Isoni
ISBN : 9781785888724
Genre : Computers
File Size : 75. 44 MB
Format : PDF, ePub, Mobi
Download : 738
Read : 706

Get This Book


Explore the web and make smarter predictions using Python About This Book Targets two big and prominent markets where sophisticated web apps are of need and importance. Practical examples of building machine learning web application, which are easy to follow and replicate. A comprehensive tutorial on Python libraries and frameworks to get you up and started. Who This Book Is For The book is aimed at upcoming and new data scientists who have little experience with machine learning or users who are interested in and are working on developing smart (predictive) web applications. Knowledge of Django would be beneficial. The reader is expected to have a background in Python programming and good knowledge of statistics. What You Will Learn Get familiar with the fundamental concepts and some of the jargons used in the machine learning community Use tools and techniques to mine data from websites Grasp the core concepts of Django framework Get to know the most useful clustering and classification techniques and implement them in Python Acquire all the necessary knowledge to build a web application with Django Successfully build and deploy a movie recommendation system application using the Django framework in Python In Detail Python is a general purpose and also a comparatively easy to learn programming language. Hence it is the language of choice for data scientists to prototype, visualize, and run data analyses on small and medium-sized data sets. This is a unique book that helps bridge the gap between machine learning and web development. It focuses on the difficulties of implementing predictive analytics in web applications. We focus on the Python language, frameworks, tools, and libraries, showing you how to build a machine learning system. You will explore the core machine learning concepts and then develop and deploy the data into a web application using the Django framework. You will also learn to carry out web, document, and server mining tasks, and build recommendation engines. Later, you will explore Python's impressive Django framework and will find out how to build a modern simple web app with machine learning features. Style and approach Instead of being overwhelmed with multiple concepts at once, this book provides a step-by-step approach that will guide you through one topic at a time. An intuitive step-by step guide that will focus on one key topic at a time. Building upon the acquired knowledge in each chapter, we will connect the fundamental theory and practical tips by illustrative visualizations and hands-on code examples.

Machine Learning For The Web

Author : Andrea Isoni
ISBN : 1785886606
Genre : Computers
File Size : 23. 10 MB
Format : PDF, Mobi
Download : 510
Read : 1321

Get This Book



Deep Learning

Author : Ian Goodfellow
ISBN : 9780262337373
Genre : Computers
File Size : 80. 6 MB
Format : PDF, ePub, Docs
Download : 504
Read : 1115

Get This Book


"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -- Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Machine Learning For Dummies

Author : John Paul Mueller
ISBN : 9781119245513
Genre : Computers
File Size : 26. 92 MB
Format : PDF, ePub, Docs
Download : 99
Read : 581

Get This Book


Machine learning is an exciting new way to use computers to perform tasks that require the ability to learn from experience. In order to make machine learning a reality, programmers rely on special languages, such as Python and R, and new types of tools. Machine Learning For Dummies helps the reader understand what machine learning is, when it can help perform a new class of computer tasks, and how to implement machine learning using Python and R, along with the required tools. Unlike most machine learning books, Machine Learning For Dummies does not assume that the reader has years of experience using programming languages. This book provides the much-needed entry point for people who really could use machine learning to accomplish practical tasks, but dont necessarily have the skills required to use on more advanced books. This book will cover the entry level materials required to get readers up and running faster, how to perform practical tasks, how to perform useful work without getting overly involved in the underlying math principles, fun ways to play with new tools and learn as a result, and how to separate facts from myth to see how machine learning is useful in todays world. --

Python Machine Learning

Author : Sebastian Raschka
ISBN : 9781783555147
Genre : Computers
File Size : 62. 78 MB
Format : PDF, Kindle
Download : 170
Read : 1274

Get This Book


Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

Python Machine Learning

Author : Sebastian Raschka
ISBN : 9781787126022
Genre : Computers
File Size : 33. 12 MB
Format : PDF, Kindle
Download : 819
Read : 315

Get This Book


Unlock modern machine learning and deep learning techniques with Python by using the latest cutting-edge open source Python libraries. About This Book Second edition of the bestselling book on Machine Learning A practical approach to key frameworks in data science, machine learning, and deep learning Use the most powerful Python libraries to implement machine learning and deep learning Get to know the best practices to improve and optimize your machine learning systems and algorithms Who This Book Is For If you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential and unmissable resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for developers and data scientists who want to teach computers how to learn from data. What You Will Learn Understand the key frameworks in data science, machine learning, and deep learning Harness the power of the latest Python open source libraries in machine learning Explore machine learning techniques using challenging real-world data Master deep neural network implementation using the TensorFlow library Learn the mechanics of classification algorithms to implement the best tool for the job Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Delve deeper into textual and social media data using sentiment analysis In Detail Machine learning is eating the software world, and now deep learning is extending machine learning. Understand and work at the cutting edge of machine learning, neural networks, and deep learning with this second edition of Sebastian Raschka's bestselling book, Python Machine Learning. Thoroughly updated using the latest Python open source libraries, this book offers the practical knowledge and techniques you need to create and contribute to machine learning, deep learning, and modern data analysis. Fully extended and modernized, Python Machine Learning Second Edition now includes the popular TensorFlow deep learning library. The scikit-learn code has also been fully updated to include recent improvements and additions to this versatile machine learning library. Sebastian Raschka and Vahid Mirjalili's unique insight and expertise introduce you to machine learning and deep learning algorithms from scratch, and show you how to apply them to practical industry challenges using realistic and interesting examples. By the end of the book, you'll be ready to meet the new data analysis opportunities in today's world. If you've read the first edition of this book, you'll be delighted to find a new balance of classical ideas and modern insights into machine learning. Every chapter has been critically updated, and there are new chapters on key technologies. You'll be able to learn and work with TensorFlow more deeply than ever before, and get essential coverage of the Keras neural network library, along with the most recent updates to scikit-learn. Style and Approach Python Machine Learning Second Edition takes a practical, hands-on coding approach so you can learn about machine learning by coding with Python. This book moves fluently between the theoretical principles of machine learning and the practical details of implementation with Python.

Effective Amazon Machine Learning

Author : Alexis Perrier
ISBN : 9781785881794
Genre : Computers
File Size : 81. 89 MB
Format : PDF, Mobi
Download : 729
Read : 658

Get This Book


Learn to leverage Amazon's powerful platform for your predictive analytics needs About This Book Create great machine learning models that combine the power of algorithms with interactive tools without worrying about the underlying complexity Learn the What's next? of machine learning—machine learning on the cloud—with this unique guide Create web services that allow you to perform affordable and fast machine learning on the cloud Who This Book Is For This book is intended for data scientists and managers of predictive analytics projects; it will teach beginner- to advanced-level machine learning practitioners how to leverage Amazon Machine Learning and complement their existing Data Science toolbox. No substantive prior knowledge of Machine Learning, Data Science, statistics, or coding is required. What You Will Learn Learn how to use the Amazon Machine Learning service from scratch for predictive analytics Gain hands-on experience of key Data Science concepts Solve classic regression and classification problems Run projects programmatically via the command line and the Python SDK Leverage the Amazon Web Service ecosystem to access extended data sources Implement streaming and advanced projects In Detail Predictive analytics is a complex domain requiring coding skills, an understanding of the mathematical concepts underpinning machine learning algorithms, and the ability to create compelling data visualizations. Following AWS simplifying Machine learning, this book will help you bring predictive analytics projects to fruition in three easy steps: data preparation, model tuning, and model selection. This book will introduce you to the Amazon Machine Learning platform and will implement core data science concepts such as classification, regression, regularization, overfitting, model selection, and evaluation. Furthermore, you will learn to leverage the Amazon Web Service (AWS) ecosystem for extended access to data sources, implement realtime predictions, and run Amazon Machine Learning projects via the command line and the Python SDK. Towards the end of the book, you will also learn how to apply these services to other problems, such as text mining, and to more complex datasets. Style and approach This book will include use cases you can relate to. In a very practical manner, you will explore the various capabilities of Amazon Machine Learning services, allowing you to implementing them in your environment with consummate ease.

Hands On Machine Learning On Google Cloud Platform

Author : Giuseppe Ciaburro
ISBN : 9781788398879
Genre : Computers
File Size : 50. 77 MB
Format : PDF, ePub, Docs
Download : 637
Read : 979

Get This Book


Unleash Google's Cloud Platform to build, train and optimize machine learning models Key Features Get well versed in GCP pre-existing services to build your own smart models A comprehensive guide covering aspects from data processing, analyzing to building and training ML models A practical approach to produce your trained ML models and port them to your mobile for easy access Book Description Google Cloud Machine Learning Engine combines the services of Google Cloud Platform with the power and flexibility of TensorFlow. With this book, you will not only learn to build and train different complexities of machine learning models at scale but also host them in the cloud to make predictions. This book is focused on making the most of the Google Machine Learning Platform for large datasets and complex problems. You will learn from scratch how to create powerful machine learning based applications for a wide variety of problems by leveraging different data services from the Google Cloud Platform. Applications include NLP, Speech to text, Reinforcement learning, Time series, recommender systems, image classification, video content inference and many other. We will implement a wide variety of deep learning use cases and also make extensive use of data related services comprising the Google Cloud Platform ecosystem such as Firebase, Storage APIs, Datalab and so forth. This will enable you to integrate Machine Learning and data processing features into your web and mobile applications. By the end of this book, you will know the main difficulties that you may encounter and get appropriate strategies to overcome these difficulties and build efficient systems. What you will learn Use Google Cloud Platform to build data-based applications for dashboards, web, and mobile Create, train and optimize deep learning models for various data science problems on big data Learn how to leverage BigQuery to explore big datasets Use Google’s pre-trained TensorFlow models for NLP, image, video and much more Create models and architectures for Time series, Reinforcement Learning, and generative models Create, evaluate, and optimize TensorFlow and Keras models for a wide range of applications Who this book is for This book is for data scientists, machine learning developers and AI developers who want to learn Google Cloud Platform services to build machine learning applications. Since the interaction with the Google ML platform is mostly done via the command line, the reader is supposed to have some familiarity with the bash shell and Python scripting. Some understanding of machine learning and data science concepts will be handy

Monetizing Machine Learning

Author : Manuel Amunategui
ISBN : 9781484238738
Genre : Computers
File Size : 77. 98 MB
Format : PDF, Docs
Download : 449
Read : 930

Get This Book


Take your Python machine learning ideas and create serverless web applications accessible by anyone with an Internet connection. Some of the most popular serverless cloud providers are covered in this book—Amazon, Microsoft, Google, and PythonAnywhere. You will work through a series of common Python data science problems in an increasing order of complexity. The practical projects presented in this book are simple, clear, and can be used as templates to jump-start many other types of projects. You will learn to create a web application around numerical or categorical predictions, understand the analysis of text, create powerful and interactive presentations, serve restricted access to data, and leverage web plugins to accept credit card payments and donations. You will get your projects into the hands of the world in no time. Each chapter follows three steps: modeling the right way, designing and developing a local web application, and deploying onto a popular and reliable serverless cloud provider. You can easily jump to or skip particular topics in the book. You also will have access to Jupyter notebooks and code repositories for complete versions of the code covered in the book. What You’ll Learn Extend your machine learning models using simple techniques to create compelling and interactive web dashboards Leverage the Flask web framework for rapid prototyping of your Python models and ideas Create dynamic content powered by regression coefficients, logistic regressions, gradient boosting machines, Bayesian classifications, and more Harness the power of TensorFlow by exporting saved models into web applications Create rich web dashboards to handle complex real-time user input with JavaScript and Ajax to yield interactive and tailored content Create dashboards with paywalls to offer subscription-based access Access API data such as Google Maps, OpenWeather, etc. Apply different approaches to make sense of text data and return customized intelligence Build an intuitive and useful recommendation site to add value to users and entice them to keep coming back Utilize the freemium offerings of Google Analytics and analyze the results Take your ideas all the way to your customer's plate using the top serverless cloud providers Who This Book Is For Those with some programming experience with Python, code editing, and access to an interpreter in working order. The book is geared toward entrepreneurs who want to get their ideas onto the web without breaking the bank, small companies without an IT staff, students wanting exposure and training, and for all data science professionals ready to take things to the next level.

Python Deeper Insights Into Machine Learning

Author : Sebastian Raschka
ISBN : 9781787128545
Genre : Computers
File Size : 39. 50 MB
Format : PDF, Mobi
Download : 511
Read : 712

Get This Book


Leverage benefits of machine learning techniques using Python About This Book Improve and optimise machine learning systems using effective strategies. Develop a strategy to deal with a large amount of data. Use of Python code for implementing a range of machine learning algorithms and techniques. Who This Book Is For This title is for data scientist and researchers who are already into the field of data science and want to see machine learning in action and explore its real-world application. Prior knowledge of Python programming and mathematics is must with basic knowledge of machine learning concepts. What You Will Learn Learn to write clean and elegant Python code that will optimize the strength of your algorithms Uncover hidden patterns and structures in data with clustering Improve accuracy and consistency of results using powerful feature engineering techniques Gain practical and theoretical understanding of cutting-edge deep learning algorithms Solve unique tasks by building models Get grips on the machine learning design process In Detail Machine learning and predictive analytics are becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. It is one of the fastest growing trends in modern computing, and everyone wants to get into the field of machine learning. In order to obtain sufficient recognition in this field, one must be able to understand and design a machine learning system that serves the needs of a project. The idea is to prepare a learning path that will help you to tackle the real-world complexities of modern machine learning with innovative and cutting-edge techniques. Also, it will give you a solid foundation in the machine learning design process, and enable you to build customized machine learning models to solve unique problems. The course begins with getting your Python fundamentals nailed down. It focuses on answering the right questions that cove a wide range of powerful Python libraries, including scikit-learn Theano and Keras.After getting familiar with Python core concepts, it's time to dive into the field of data science. You will further gain a solid foundation on the machine learning design and also learn to customize models for solving problems. At a later stage, you will get a grip on more advanced techniques and acquire a broad set of powerful skills in the area of feature selection and feature engineering. Style and approach This course includes all the resources that will help you jump into the data science field with Python. The aim is to walk through the elements of Python covering powerful machine learning libraries. This course will explain important machine learning models in a step-by-step manner. Each topic is well explained with real-world applications with detailed guidance.Through this comprehensive guide, you will be able to explore machine learning techniques.

Top Download:

Best Books