mastering social media mining with python

Download Book Mastering Social Media Mining With Python in PDF format. You can Read Online Mastering Social Media Mining With Python here in PDF, EPUB, Mobi or Docx formats.

Mastering Social Media Mining With Python

Author : Marco Bonzanini
ISBN : 9781783552023
Genre : Computers
File Size : 54. 62 MB
Format : PDF, ePub, Mobi
Download : 801
Read : 1323

Get This Book


Acquire and analyze data from all corners of the social web with Python About This Book Make sense of highly unstructured social media data with the help of the insightful use cases provided in this guide Use this easy-to-follow, step-by-step guide to apply analytics to complicated and messy social data This is your one-stop solution to fetching, storing, analyzing, and visualizing social media data Who This Book Is For This book is for intermediate Python developers who want to engage with the use of public APIs to collect data from social media platforms and perform statistical analysis in order to produce useful insights from data. The book assumes a basic understanding of the Python Standard Library and provides practical examples to guide you toward the creation of your data analysis project based on social data. What You Will Learn Interact with a social media platform via their public API with Python Store social data in a convenient format for data analysis Slice and dice social data using Python tools for data science Apply text analytics techniques to understand what people are talking about on social media Apply advanced statistical and analytical techniques to produce useful insights from data Build beautiful visualizations with web technologies to explore data and present data products In Detail Your social media is filled with a wealth of hidden data – unlock it with the power of Python. Transform your understanding of your clients and customers when you use Python to solve the problems of understanding consumer behavior and turning raw data into actionable customer insights. This book will help you acquire and analyze data from leading social media sites. It will show you how to employ scientific Python tools to mine popular social websites such as Facebook, Twitter, Quora, and more. Explore the Python libraries used for social media mining, and get the tips, tricks, and insider insight you need to make the most of them. Discover how to develop data mining tools that use a social media API, and how to create your own data analysis projects using Python for clear insight from your social data. Style and approach This practical, hands-on guide will help you learn everything you need to perform data mining for social media. Throughout the book, we take an example-oriented approach to use Python for data analysis and provide useful tips and tricks that you can use in day-to-day tasks.

Mastering Social Media Mining With Python

Author : Marco Bonzanini
ISBN : 1783552018
Genre : Computers
File Size : 63. 80 MB
Format : PDF, ePub, Mobi
Download : 501
Read : 565

Get This Book



Python Social Media Analytics

Author : Siddhartha Chatterjee
ISBN : 9781787126756
Genre : Computers
File Size : 73. 11 MB
Format : PDF, Kindle
Download : 330
Read : 1104

Get This Book


Leverage the power of Python to collect, process, and mine deep insights from social media data About This Book Acquire data from various social media platforms such as Facebook, Twitter, YouTube, GitHub, and more Analyze and extract actionable insights from your social data using various Python tools A highly practical guide to conducting efficient social media analytics at scale Who This Book Is For If you are a programmer or a data analyst familiar with the Python programming language and want to perform analyses of your social data to acquire valuable business insights, this book is for you. The book does not assume any prior knowledge of any data analysis tool or process. What You Will Learn Understand the basics of social media mining Use PyMongo to clean, store, and access data in MongoDB Understand user reactions and emotion detection on Facebook Perform Twitter sentiment analysis and entity recognition using Python Analyze video and campaign performance on YouTube Mine popular trends on GitHub and predict the next big technology Extract conversational topics on public internet forums Analyze user interests on Pinterest Perform large-scale social media analytics on the cloud In Detail Social Media platforms such as Facebook, Twitter, Forums, Pinterest, and YouTube have become part of everyday life in a big way. However, these complex and noisy data streams pose a potent challenge to everyone when it comes to harnessing them properly and benefiting from them. This book will introduce you to the concept of social media analytics, and how you can leverage its capabilities to empower your business. Right from acquiring data from various social networking sources such as Twitter, Facebook, YouTube, Pinterest, and social forums, you will see how to clean data and make it ready for analytical operations using various Python APIs. This book explains how to structure the clean data obtained and store in MongoDB using PyMongo. You will also perform web scraping and visualize data using Scrappy and Beautifulsoup. Finally, you will be introduced to different techniques to perform analytics at scale for your social data on the cloud, using Python and Spark. By the end of this book, you will be able to utilize the power of Python to gain valuable insights from social media data and use them to enhance your business processes. Style and approach This book follows a step-by-step approach to teach readers the concepts of social media analytics using the Python programming language. To explain various data analysis processes, real-world datasets are used wherever required.

Learning Data Mining With Python

Author : Robert Layton
ISBN : 9781787129566
Genre : Computers
File Size : 30. 27 MB
Format : PDF, Docs
Download : 735
Read : 380

Get This Book


Harness the power of Python to develop data mining applications, analyze data, delve into machine learning, explore object detection using Deep Neural Networks, and create insightful predictive models. About This Book Use a wide variety of Python libraries for practical data mining purposes. Learn how to find, manipulate, analyze, and visualize data using Python. Step-by-step instructions on data mining techniques with Python that have real-world applications. Who This Book Is For If you are a Python programmer who wants to get started with data mining, then this book is for you. If you are a data analyst who wants to leverage the power of Python to perform data mining efficiently, this book will also help you. No previous experience with data mining is expected. What You Will Learn Apply data mining concepts to real-world problems Predict the outcome of sports matches based on past results Determine the author of a document based on their writing style Use APIs to download datasets from social media and other online services Find and extract good features from difficult datasets Create models that solve real-world problems Design and develop data mining applications using a variety of datasets Perform object detection in images using Deep Neural Networks Find meaningful insights from your data through intuitive visualizations Compute on big data, including real-time data from the internet In Detail This book teaches you to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis. This book covers a large number of libraries available in Python, including the Jupyter Notebook, pandas, scikit-learn, and NLTK. You will gain hands on experience with complex data types including text, images, and graphs. You will also discover object detection using Deep Neural Networks, which is one of the big, difficult areas of machine learning right now. With restructured examples and code samples updated for the latest edition of Python, each chapter of this book introduces you to new algorithms and techniques. By the end of the book, you will have great insights into using Python for data mining and understanding of the algorithms as well as implementations. Style and approach This book will be your comprehensive guide to learning the various data mining techniques and implementing them in Python. A variety of real-world datasets is used to explain data mining techniques in a very crisp and easy to understand manner.

Social Media Mining

Author : Reza Zafarani
ISBN : 9781107018853
Genre : Computers
File Size : 47. 94 MB
Format : PDF
Download : 233
Read : 1217

Get This Book


Integrates social media, social network analysis, and data mining to provide an understanding of the potentials of social media mining.

Mastering Social Media Mining With R

Author : Sharan Kumar Ravindran
ISBN : 9781784399672
Genre : Computers
File Size : 40. 59 MB
Format : PDF, ePub
Download : 729
Read : 1268

Get This Book


Extract valuable data from your social media sites and make better business decisions using R About This Book Explore the social media APIs in R to capture data and tame it Employ the machine learning capabilities of R to gain optimal business value A hands-on guide with real-world examples to help you take advantage of the vast opportunities that come with social media data Who This Book Is For If you have basic knowledge of R in terms of its libraries and are aware of different machine learning techniques, this book is for you. Those with experience in data analysis who are interested in mining social media data will find this book useful. What You Will Learn Access APIs of popular social media sites and extract data Perform sentiment analysis and identify trending topics Measure CTR performance for social media campaigns Implement exploratory data analysis and correlation analysis Build a logistic regression model to detect spam messages Construct clusters of pictures using the K-means algorithm and identify popular personalities and destinations Develop recommendation systems using Collaborative Filtering and the Apriori algorithm In Detail With an increase in the number of users on the web, the content generated has increased substantially, bringing in the need to gain insights into the untapped gold mine that is social media data. For computational statistics, R has an advantage over other languages in providing readily-available data extraction and transformation packages, making it easier to carry out your ETL tasks. Along with this, its data visualization packages help users get a better understanding of the underlying data distributions while its range of "standard" statistical packages simplify analysis of the data. This book will teach you how powerful business cases are solved by applying machine learning techniques on social media data. You will learn about important and recent developments in the field of social media, along with a few advanced topics such as Open Authorization (OAuth). Through practical examples, you will access data from R using APIs of various social media sites such as Twitter, Facebook, Instagram, GitHub, Foursquare, LinkedIn, Blogger, and other networks. We will provide you with detailed explanations on the implementation of various use cases using R programming. With this handy guide, you will be ready to embark on your journey as an independent social media analyst. Style and approach This easy-to-follow guide is packed with hands-on, step-by-step examples that will enable you to convert your real-world social media data into useful, practical information.

Mastering Python For Data Science

Author : Samir Madhavan
ISBN : 9781784392628
Genre : Computers
File Size : 21. 11 MB
Format : PDF, ePub, Mobi
Download : 780
Read : 872

Get This Book


Explore the world of data science through Python and learn how to make sense of data About This Book Master data science methods using Python and its libraries Create data visualizations and mine for patterns Advanced techniques for the four fundamentals of Data Science with Python - data mining, data analysis, data visualization, and machine learning Who This Book Is For If you are a Python developer who wants to master the world of data science then this book is for you. Some knowledge of data science is assumed. What You Will Learn Manage data and perform linear algebra in Python Derive inferences from the analysis by performing inferential statistics Solve data science problems in Python Create high-end visualizations using Python Evaluate and apply the linear regression technique to estimate the relationships among variables. Build recommendation engines with the various collaborative filtering algorithms Apply the ensemble methods to improve your predictions Work with big data technologies to handle data at scale In Detail Data science is a relatively new knowledge domain which is used by various organizations to make data driven decisions. Data scientists have to wear various hats to work with data and to derive value from it. The Python programming language, beyond having conquered the scientific community in the last decade, is now an indispensable tool for the data science practitioner and a must-know tool for every aspiring data scientist. Using Python will offer you a fast, reliable, cross-platform, and mature environment for data analysis, machine learning, and algorithmic problem solving. This comprehensive guide helps you move beyond the hype and transcend the theory by providing you with a hands-on, advanced study of data science. Beginning with the essentials of Python in data science, you will learn to manage data and perform linear algebra in Python. You will move on to deriving inferences from the analysis by performing inferential statistics, and mining data to reveal hidden patterns and trends. You will use the matplot library to create high-end visualizations in Python and uncover the fundamentals of machine learning. Next, you will apply the linear regression technique and also learn to apply the logistic regression technique to your applications, before creating recommendation engines with various collaborative filtering algorithms and improving your predictions by applying the ensemble methods. Finally, you will perform K-means clustering, along with an analysis of unstructured data with different text mining techniques and leveraging the power of Python in big data analytics. Style and approach This book is an easy-to-follow, comprehensive guide on data science using Python. The topics covered in the book can all be used in real world scenarios.

Social Media Mining With R

Author : Nathan Danneman
ISBN : 9781783281787
Genre : Computers
File Size : 56. 5 MB
Format : PDF, ePub, Mobi
Download : 723
Read : 793

Get This Book


A concise, hands-on guide with many practical examples and a detailed treatise on inference and social science research that will help you in mining data in the real world. Whether you are an undergraduate who wishes to get hands-on experience working with social data from the Web, a practitioner wishing to expand your competencies and learn unsupervised sentiment analysis, or you are simply interested in social data analysis, this book will prove to be an essential asset. No previous experience with R or statistics is required, though having knowledge of both will enrich your experience.

Mastering Machine Learning With Python In Six Steps

Author : Manohar Swamynathan
ISBN : 9781484228661
Genre : Computers
File Size : 50. 25 MB
Format : PDF, ePub, Mobi
Download : 738
Read : 233

Get This Book


Master machine learning with Python in six steps and explore fundamental to advanced topics, all designed to make you a worthy practitioner. This book’s approach is based on the “Six degrees of separation” theory, which states that everyone and everything is a maximum of six steps away. Mastering Machine Learning with Python in Six Steps presents each topic in two parts: theoretical concepts and practical implementation using suitable Python packages. You’ll learn the fundamentals of Python programming language, machine learning history, evolution, and the system development frameworks. Key data mining/analysis concepts, such as feature dimension reduction, regression, time series forecasting and their efficient implementation in Scikit-learn are also covered. Finally, you’ll explore advanced text mining techniques, neural networks and deep learning techniques, and their implementation. All the code presented in the book will be available in the form of iPython notebooks to enable you to try out these examples and extend them to your advantage. What You'll Learn Examine the fundamentals of Python programming language Review machine Learning history and evolution Understand machine learning system development frameworks Implement supervised/unsupervised/reinforcement learning techniques with examples Explore fundamental to advanced text mining techniques Implement various deep learning frameworks Who This Book Is For Python developers or data engineers looking to expand their knowledge or career into machine learning area. Non-Python (R, SAS, SPSS, Matlab or any other language) machine learning practitioners looking to expand their implementation skills in Python. Novice machine learning practitioners looking to learn advanced topics, such as hyperparameter tuning, various ensemble techniques, natural language processing (NLP), deep learning, and basics of reinforcement learning.

Mining The Social Web

Author : Matthew A. Russell
ISBN : 9781449388348
Genre : Computers
File Size : 55. 75 MB
Format : PDF, Kindle
Download : 867
Read : 163

Get This Book


Provides information on data analysis from a vareity of social networking sites, including Facebook, Twitter, and LinkedIn.

Top Download:

Best Books