mathematical analysis ii unitext

Download Book Mathematical Analysis Ii Unitext in PDF format. You can Read Online Mathematical Analysis Ii Unitext here in PDF, EPUB, Mobi or Docx formats.

Mathematical Analysis Ii

Author : Claudio Canuto
ISBN : 9783319127576
Genre : Mathematics
File Size : 42. 27 MB
Format : PDF, Docs
Download : 310
Read : 1265

Download Now


The purpose of the volume is to provide a support textbook for a second lecture course on Mathematical Analysis. The contents are organised to suit, in particular, students of Engineering, Computer Science and Physics, all areas in which mathematical tools play a crucial role. The basic notions and methods concerning integral and differential calculus for multivariable functions, series of functions and ordinary differential equations are presented in a manner that elicits critical reading and prompts a hands-on approach to concrete applications. The pedagogical layout echoes the one used in the companion text Mathematical Analysis I. The book’s structure has a specifically-designed modular nature, which allows for great flexibility in the preparation of a lecture course on Mathematical Analysis. The style privileges clarity in the exposition and a linear progression through the theory. The material is organised on two levels. The first, reflected in this book, allows students to grasp the essential ideas, familiarise with the corresponding key techniques and find the proofs of the main results. The second level enables the strongly motivated reader to explore further into the subject, by studying also the material contained in the appendices. Definitions are enriched by many examples, which illustrate the properties discussed. A host of solved exercises complete the text, at least half of which guide the reader to the solution. This new edition features additional material with the aim of matching the widest range of educational choices for a second course of Mathematical Analysis.

Mathematical Analysis Ii

Author : Vladimir A. Zorich
ISBN : 3540406336
Genre : Mathematics
File Size : 65. 3 MB
Format : PDF, Kindle
Download : 494
Read : 159

Download Now


This softcover edition of a very popular work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds, Fourier, Laplace, and Legendre transforms, elliptic functions and distributions.

Mathematical Analysis Ii

Author : V. A. Zorich
ISBN : 9783662489932
Genre : Mathematics
File Size : 36. 70 MB
Format : PDF, ePub, Docs
Download : 944
Read : 430

Download Now


This second English edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds; asymptotic methods; Fourier, Laplace, and Legendre transforms; elliptic functions; and distributions. Especially notable in this course are the clearly expressed orientation toward the natural sciences and the informal exploration of the essence and the roots of the basic concepts and theorems of calculus. Clarity of exposition is matched by a wealth of instructive exercises, problems, and fresh applications to areas seldom touched on in textbooks on real analysis. The main difference between the second and first English editions is the addition of a series of appendices to each volume. There are six of them in the first volume and five in the second. The subjects of these appendices are diverse. They are meant to be useful to both students (in mathematics and physics) and teachers, who may be motivated by different goals. Some of the appendices are surveys, both prospective and retrospective. The final survey establishes important conceptual connections between analysis and other parts of mathematics. This second volume presents classical analysis in its current form as part of a unified mathematics. It shows how analysis interacts with other modern fields of mathematics such as algebra, differential geometry, differential equations, complex analysis, and functional analysis. This book provides a firm foundation for advanced work in any of these directions.

Mathematical Analysis I

Author : Claudio Canuto
ISBN : 9783319127729
Genre : Mathematics
File Size : 37. 28 MB
Format : PDF, ePub, Mobi
Download : 780
Read : 987

Download Now


The purpose of the volume is to provide a support for a first course in Mathematics. The contents are organised to appeal especially to Engineering, Physics and Computer Science students, all areas in which mathematical tools play a crucial role. Basic notions and methods of differential and integral calculus for functions of one real variable are presented in a manner that elicits critical reading and prompts a hands-on approach to concrete applications. The layout has a specifically-designed modular nature, allowing the instructor to make flexible didactical choices when planning an introductory lecture course. The book may in fact be employed at three levels of depth. At the elementary level the student is supposed to grasp the very essential ideas and familiarise with the corresponding key techniques. Proofs to the main results befit the intermediate level, together with several remarks and complementary notes enhancing the treatise. The last, and farthest-reaching, level requires the additional study of the material contained in the appendices, which enable the strongly motivated reader to explore further into the subject. Definitions and properties are furnished with substantial examples to stimulate the learning process. Over 350 solved exercises complete the text, at least half of which guide the reader to the solution. This new edition features additional material with the aim of matching the widest range of educational choices for a first course of Mathematics.

Reduced Basis Methods For Partial Differential Equations

Author : Alfio Quarteroni
ISBN : 9783319154312
Genre : Mathematics
File Size : 32. 99 MB
Format : PDF, Docs
Download : 607
Read : 633

Download Now


This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization. The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures. More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis. The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing. All these pseudocodes are in fact implemented in a MATLAB package that is freely available at https://github.com/redbkit

A Primer On Pdes

Author : Sandro Salsa
ISBN : 9788847028623
Genre : Mathematics
File Size : 47. 97 MB
Format : PDF, Mobi
Download : 265
Read : 963

Download Now


This book is designed as an advanced undergraduate or a first-year graduate course for students from various disciplines like applied mathematics, physics, engineering. It has evolved while teaching courses on partial differential equations during the last decade at the Politecnico of Milan. The main purpose of these courses was twofold: on the one hand, to train the students to appreciate the interplay between theory and modelling in problems arising in the applied sciences and on the other hand to give them a solid background for numerical methods, such as finite differences and finite elements.

Partial Differential Equations In Action

Author : Sandro Salsa
ISBN : 9783319150932
Genre : Mathematics
File Size : 59. 20 MB
Format : PDF, Docs
Download : 325
Read : 312

Download Now


The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.

Spectral Theory And Quantum Mechanics

Author : Valter Moretti
ISBN : 9788847028357
Genre : Mathematics
File Size : 21. 19 MB
Format : PDF, ePub, Mobi
Download : 742
Read : 286

Download Now


This book pursues the accurate study of the mathematical foundations of Quantum Theories. It may be considered an introductory text on linear functional analysis with a focus on Hilbert spaces. Specific attention is given to spectral theory features that are relevant in physics. Having left the physical phenomenology in the background, it is the formal and logical aspects of the theory that are privileged. Another not lesser purpose is to collect in one place a number of useful rigorous statements on the mathematical structure of Quantum Mechanics, including some elementary, yet fundamental, results on the Algebraic Formulation of Quantum Theories. In the attempt to reach out to Master's or PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book should benefit established researchers to organise and present the profusion of advanced material disseminated in the literature. Most chapters are accompanied by exercises, many of which are solved explicitly.

A Textbook On Ordinary Differential Equations

Author : Shair Ahmad
ISBN : 9783319021294
Genre : Mathematics
File Size : 44. 47 MB
Format : PDF, ePub, Mobi
Download : 527
Read : 194

Download Now


The book is a primer of the theory of Ordinary Differential Equations. Each chapter is completed by a broad set of exercises; the reader will also find a set of solutions of selected exercises. The book contains many interesting examples as well (like the equations for the electric circuits, the pendulum equation, the logistic equation, the Lotka-Volterra system, and many other) which introduce the reader to some interesting aspects of the theory and its applications. The work is mainly addressed to students of Mathematics, Physics, Engineering, Statistics, Computer Sciences, with knowledge of Calculus and Linear Algebra, and contains more advanced topics for further developments, such as Laplace transform; Stability theory and existence of solutions to Boundary Value problems. A complete Solutions Manual, containing solutions to all the exercises published in the book, is available. Instructors who wish to adopt the book may request the manual by writing directly to one of the authors.

Calculus Problems

Author : Marco Baronti
ISBN : 9783319154282
Genre : Mathematics
File Size : 71. 86 MB
Format : PDF, Mobi
Download : 857
Read : 204

Download Now


This book, intended as a practical working guide for calculus students, includes 450 exercises. It is designed for undergraduate students in Engineering, Mathematics, Physics, or any other field where rigorous calculus is needed, and will greatly benefit anyone seeking a problem-solving approach to calculus. Each chapter starts with a summary of the main definitions and results, which is followed by a selection of solved exercises accompanied by brief, illustrative comments. A selection of problems with indicated solutions rounds out each chapter. A final chapter explores problems that are not designed with a single issue in mind but instead call for the combination of a variety of techniques, rounding out the book’s coverage. Though the book’s primary focus is on functions of one real variable, basic ordinary differential equations (separation of variables, linear first order and constant coefficients ODEs) are also discussed. The material is taken from actual written tests that have been delivered at the Engineering School of the University of Genoa. Literally thousands of students have worked on these problems, ensuring their real-world applicability.

Top Download:

Best Books