mechanical behaviour of materials volume ii fracture mechanics and damage 191 solid mechanics and its applications

Download Book Mechanical Behaviour Of Materials Volume Ii Fracture Mechanics And Damage 191 Solid Mechanics And Its Applications in PDF format. You can Read Online Mechanical Behaviour Of Materials Volume Ii Fracture Mechanics And Damage 191 Solid Mechanics And Its Applications here in PDF, EPUB, Mobi or Docx formats.

Mechanical Behaviour Of Materials

Author : Dominique François
ISBN : 9789400749306
Genre : Technology & Engineering
File Size : 46. 29 MB
Format : PDF, ePub, Docs
Download : 302
Read : 473

Get This Book


Designing new structural materials, extending lifetimes and guarding against fracture in service are among the preoccupations of engineers, and to deal with these they need to have command of the mechanics of material behaviour. This ought to reflect in the training of students. In this respect, the first volume of this work deals with elastic, elastoplastic, elastoviscoplastic and viscoelastic behaviours; this second volume continues with fracture mechanics and damage, and with contact mechanics, friction and wear. As in Volume I, the treatment links the active mechanisms on the microscopic scale and the laws of macroscopic behaviour. Chapter I is an introduction to the various damage phenomena. Chapter II gives the essential of fracture mechanics. Chapter III is devoted to brittle fracture, chapter IV to ductile fracture and chapter V to the brittle-ductile transition. Chapter VI is a survey of fatigue damage. Chapter VII is devoted to hydrogen embrittlement and to environment assisted cracking, chapter VIII to creep damage. Chapter IX gives results of contact mechanics and a description of friction and wear mechanisms. Finally, chapter X treats damage in non metallic materials: ceramics, glass, concrete, polymers, wood and composites. The volume includes many explanatory diagrams and illustrations. A third volume will include exercises allowing deeper understanding of the subjects treated in the first two volumes.

Modeling High Temperature Materials Behavior For Structural Analysis

Author : Konstantin Naumenko
ISBN : 9783319316291
Genre : Technology & Engineering
File Size : 78. 34 MB
Format : PDF, ePub, Docs
Download : 972
Read : 1080

Get This Book


This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.

Mechanical Behaviour Of Materials

Author : Dominique François
ISBN : 0792348958
Genre : Technology & Engineering
File Size : 45. 88 MB
Format : PDF, Kindle
Download : 344
Read : 480

Get This Book


Designing new structural materials, extending lifetimes and guarding against fracture in service are among the preoccupations of engineers, and to deal with these they need to have command of the mechanics of material behaviour. The first volume of this two-volume work deals with elastic and elastoplastic behaviour; this second volume continues with viscoelasticity, damage, fracture (resistance to cracking) and contact mechanics. As in Volume I, the treatment starts from the active mechanisms on the microscopic scale and develops the laws of macroscopic behaviour. Chapter I deals with viscoplastic behaviour, as shown, for example, at low temperatures by the effects of oscillatory loads and at high temperatures by creep under steady load. Chapter 2 treats damage phenomena encountered in all materials - for example, metals, polymers, glasses, concretes - such as cavitation, fatigue and stress-corrosion cracking. Chapter 3 treats those concepts of fracture mechanics that are needed for the understanding of resistance to cracking and Chapter 4 completes the volume with a survey of the main concepts of contact mechanics. As with Volume I, each chapter has a set of exercises, either with solutions or with indications of how to attack the problem; and there are many explanatory diagrams and other illustrations.

High Temperature Deformation And Fracture Of Materials

Author : Jun-Shan Zhang
ISBN : 9780857090805
Genre : Technology & Engineering
File Size : 32. 13 MB
Format : PDF, ePub
Download : 555
Read : 822

Get This Book


The energy, petrochemical, aerospace and other industries all require materials able to withstand high temperatures. High temperature strength is defined as the resistance of a material to high temperature deformation and fracture. This important book provides a valuable reference to the main theories of high temperature deformation and fracture and the ways they can be used to predict failure and service life. Analyses creep behaviour of materials, the evolution of dislocation substructures during creep, dislocation motion at elevated temperatures and importantly, recovery-creep theories of pure metals Examines high temperature fracture, including nucleation of creep cavity, diffusional growth and constrained growth of creep cavities A valuable reference to the main theories of high temperature deformation and fracture and the ways they can be used to predict failure and service life

Continuum Scale Simulation Of Engineering Materials

Author : Dierk Raabe
ISBN : 9783527604210
Genre : Technology & Engineering
File Size : 82. 28 MB
Format : PDF, ePub
Download : 554
Read : 1057

Get This Book


This book fills a gap by presenting our current knowledge and understanding of continuum-based concepts behind computational methods used for microstructure and process simulation of engineering materials above the atomic scale. The volume provides an excellent overview on the different methods, comparing the different methods in terms of their respective particular weaknesses and advantages. This trains readers to identify appropriate approaches to the new challenges that emerge every day in this exciting domain. Divided into three main parts, the first is a basic overview covering fundamental key methods in the field of continuum scale materials simulation. The second one then goes on to look at applications of these methods to the prediction of microstructures, dealing with explicit simulation examples, while the third part discusses example applications in the field of process simulation. By presenting a spectrum of different computational approaches to materials, the book aims to initiate the development of corresponding virtual laboratories in the industry in which these methods are exploited. As such, it addresses graduates and undergraduates, lecturers, materials scientists and engineers, physicists, biologists, chemists, mathematicians, and mechanical engineers.

Iutam Symposium On Micromechanics Of Plasticity And Damage Of Multiphase Materials

Author : André Pineau
ISBN : 9789400917569
Genre : Technology & Engineering
File Size : 79. 84 MB
Format : PDF, Docs
Download : 836
Read : 411

Get This Book


The IUT AM Symposium on "Micromechanics of Plasticity and Damage of Multiphase Materials" was held in Sevres, Paris, France, 29 August - 1 September 1995. The Symposium was attended by 83 persons from 18 countries. In addition 17 young French students attended the meeting. During the 4 day meeting, a total of 55 papers were presented, including 24 papers in the poster sessions. The meeting was divided into 7 oral and 3 poster sessions. The 7 oral sessions were the following: - Plasticity and Viscoplasticity I and II; - Phase transformations; - Damage I and II; - Statistical and geometrical aspects; - Cracks and interfaces. Each poster session was introduced by a Rapporteur, as follows: - Session I (Plasticity and Viscoplasticity): G. Cailletaud; - Session 2 (Damage): D. Franc;:ois; - Session 3 (Phase transformation; statistical and geometrical aspects): D. Jeulin. The main purpose of the Symposium was the discussion of the state of the art in the development of micromechanical models used to predict the macroscopic mechanical behaviour of mUltiphase solid materials. These materials consist of at least two chemically different phases, present either initially or formed during plastic deformation, when a strain-induced phase transformation takes place. One session was devoted to the latter case. Continuously strengthened composite materials, containing long fibers, were out of the scope of the Symposium.

Iutam Symposium On Nonlinear Analysis Of Fracture

Author : J.R. Willis
ISBN : 9789401156424
Genre : Science
File Size : 81. 18 MB
Format : PDF, Mobi
Download : 839
Read : 773

Get This Book


This volume constitutes the Proceedings of the IUTAM Symposium on 'Nonlinear Analysis of Fracture', held in Cambridge from 3rd to 7th Septem ber 1995. Its objective was to assess and place on record the current state of understanding of this important class of phenomena, from the standpoints of mathematics, materials science, physics and engineering. All fracture phenomena are nonlinear; the reason for inclusion of this qualification in the title was to reflect the intention that emphasis should be placed on distinctive aspects of nonlinearity, not only with regard to material consti tutive behaviour but also with regard to insights gained, particularly from the mathematics and physics communities, during the recent dramatic ad vances in understanding of nonlinear systems in general. The expertise represented in the Symposium was accordingly very wide, and many of the world's greatest authorities in their respective fields participated. The Symposium remained focussed on issues of practical significance for fracture phenomena, with concentration on aspects that are still im perfectly understood. The most significant unifying issue in this regard is that of scale: this theme was addressed from several perspectives. One important aspect is the problem of passing information on one scale up or down, as an input for analysis at another scale. Although this is not always the case, it may be that the microscopic process of fracture is understood in some particular class of materials.

Computational Fluid And Solid Mechanics 2003

Author : K.J Bathe
ISBN : 008052947X
Genre : Technology & Engineering
File Size : 58. 81 MB
Format : PDF, Mobi
Download : 575
Read : 733

Get This Book


Bringing together the world's leading researchers and practitioners of computational mechanics, these new volumes meet and build on the eight key challenges for research and development in computational mechanics. Researchers have recently identified eight critical research tasks facing the field of computational mechanics. These tasks have come about because it appears possible to reach a new level of mathematical modelling and numerical solution that will lead to a much deeper understanding of nature and to great improvements in engineering design. The eight tasks are: The automatic solution of mathematical models Effective numerical schemes for fluid flows The development of an effective mesh-free numerical solution method The development of numerical procedures for multiphysics problems The development of numerical procedures for multiscale problems The modelling of uncertainties The analysis of complete life cycles of systems Education - teaching sound engineering and scientific judgement Readers of Computational Fluid and Solid Mechanics 2003 will be able to apply the combined experience of many of the world's leading researchers to their own research needs. Those in academic environments will gain a better insight into the needs and constraints of the industries they are involved with; those in industry will gain a competitive advantage by gaining insight into the cutting edge research being carried out by colleagues in academia. Features Bridges the gap between academic researchers and practitioners in industry Outlines the eight main challenges facing Research and Design in Computational mechanics and offers new insights into the shifting the research agenda Provides a vision of how strong, basic and exciting education at university can be harmonized with life-long learning to obtain maximum value from the new powerful tools of analysis

High Temperature Mechanical Behaviour Of Ceramic Composites

Author : Karl Jakus
ISBN : 9780080523880
Genre : Technology & Engineering
File Size : 45. 80 MB
Format : PDF, Docs
Download : 726
Read : 1322

Get This Book


High Temperature Mechanical Behavior of Ceramic Composites provides an up-to-date comprehensive coverage of the mechanical behavior of ceramic matrix composites at elevated temperatures. Topics include both short-term behavior (strength, fracture toughness and R-curve behavior) and long-term behavior (creep, creep-fatigue, delayed failure and lifetime). Emphasis is on a review of fundamentals and on the mechanics and mechanisms underlying properties. This is the first time that complete information of elevated temperature behavior of ceramic composites has ever been compacted together in a single volume. Of particular importance is that each chapter, written by internationally recognized experts, includes a substantial review component enabling the new material to be put in proper perspective. Shanti Nair is Associate Professor at the Department of Mechanical Engineering at the University of Massachusetts at Amherst. Karl Jakus is Professor at the University of Massachusetts at Amherst.

Dynamic Deformation Damage And Fracture In Composite Materials And Structures

Author : Vadim V. Silberschmidt
ISBN : 9780081000830
Genre : Technology & Engineering
File Size : 66. 58 MB
Format : PDF, ePub
Download : 631
Read : 1067

Get This Book


Composite materials, with their higher exposure to dynamic loads, have increasingly been used in aerospace, naval, automotive, sports and other sectors over the last few decades. Dynamic Deformation, Damage and Fracture in Composite Materials and Structures reviews various aspects of dynamic deformation, damage and fracture, mostly in composite laminates and sandwich structures, in a broad range of application fields including aerospace, automotive, defense and sports engineering. As the mechanical behavior and performance of composites varies under different dynamic loading regimes and velocities, the book is divided into sections that examine the different loading regimes and velocities. Part one examine low-velocity loading and part two looks at high-velocity loading. Part three then assesses shock and blast (i.e. contactless) events and the final part focuses on impact (contact) events. As sports applications of composites are linked to a specific subset of dynamic loading regimes, these applications are reviewed in the final part. Examines dynamic deformation and fracture of composite materials Covers experimental, analytical and numerical aspects Addresses important application areas such as aerospace, automotive, wind energy and defence, with a special section on sport applications

Top Download:

Best Books