models for intensive longitudinal data

Download Book Models For Intensive Longitudinal Data in PDF format. You can Read Online Models For Intensive Longitudinal Data here in PDF, EPUB, Mobi or Docx formats.

Models For Intensive Longitudinal Data

Author : Theodore A. Walls
ISBN : 0198038666
Genre : Medical
File Size : 29. 15 MB
Format : PDF
Download : 989
Read : 382

Download Now


Rapid technological advances in devices used for data collection have led to the emergence of a new class of longitudinal data: intensive longitudinal data (ILD). Behavioral scientific studies now frequently utilize handheld computers, beepers, web interfaces, and other technological tools for collecting many more data points over time than previously possible. Other protocols, such as those used in fMRI and monitoring of public safety, also produce ILD, hence the statistical models in this volume are applicable to a range of data. The volume features state-of-the-art statistical modeling strategies developed by leading statisticians and methodologists working on ILD in conjunction with behavioral scientists. Chapters present applications from across the behavioral and health sciences, including coverage of substantive topics such as stress, smoking cessation, alcohol use, traffic patterns, educational performance and intimacy. Models for Intensive Longitudinal Data (MILD) is designed for those who want to learn about advanced statistical models for intensive longitudinal data and for those with an interest in selecting and applying a given model. The chapters highlight issues of general concern in modeling these kinds of data, such as a focus on regulatory systems, issues of curve registration, variable frequency and spacing of measurements, complex multivariate patterns of change, and multiple independent series. The extraordinary breadth of coverage makes this an indispensable reference for principal investigators designing new studies that will introduce ILD, applied statisticians working on related models, and methodologists, graduate students, and applied analysts working in a range of fields. A companion Web site at www.oup.com/us/MILD contains program examples and documentation.

Models For Intensive Longitudinal Data

Author : Theodore A. Walls
ISBN : STANFORD:36105114503076
Genre : Medical
File Size : 25. 1 MB
Format : PDF
Download : 247
Read : 932

Download Now


Rapid technological advances in devices used for data collection have led to the emergence of a new class of longitudinal data: intensive longitudinal data (ILD). Behavioral scientific studies now frequently utilize handheld computers, beepers, web interfaces, and other technological tools for collecting many more data points over time than previously possible. Other protocols, such as those used in fMRI and monitoring of public safety, also produce ILD, hence the statistical models in this volume are applicable to a range of data. The volume features state-of-the-art statistical modeling strategies developed by leading statisticians and methodologists working on ILD in conjunction with behavioral scientists. Chapters present applications from across the behavioral and health sciences, including coverage of substantive topics such as stress, smoking cessation, alcohol use, traffic patterns, educational performance and intimacy.Models for Intensive Longitudinal Data (MILD) is designed for those who want to learn about advanced statistical models for intensive longitudinal data and for those with an interest in selecting and applying a given model. The chapters highlight issues of general concern in modeling these kinds of data, such as a focus on regulatory systems, issues of curve registration, variable frequency and spacing of measurements, complex multivariate patterns of change, and multiple independent series. The extraordinary breadth of coverage makes this an indispensable reference for principal investigators designing new studies that will introduce ILD, applied statisticians working on related models, and methodologists, graduate students, and applied analysts working in a range of fields. A companion Web site at www.oup.com/us/MILD contains program examples and documentation.

Intensive Longitudinal Methods

Author : Niall Bolger
ISBN : 9781462506781
Genre : Psychology
File Size : 62. 65 MB
Format : PDF, Mobi
Download : 186
Read : 180

Download Now


This book offers a complete, practical guide to doing an intensive longitudinal study with individuals, dyads, or groups. It provides the tools for studying social, psychological, and physiological processes in everyday contexts, using methods such as diary and experience sampling. A range of engaging, worked-through research examples with datasets are featured. Coverage includes how to: select the best intensive longitudinal design for a particular research question, apply multilevel models to within-subject designs, model within-subject change processes for continuous and categorical outcomes, assess the reliability of within-subject changes, assure sufficient statistical power, and more. Several end-of-chapter write-ups illustrate effective ways to present study findings for publication. Datasets and output in SPSS, SAS, Mplus, HLM, MLwiN, and R for the examples are available on the companion website (www.intensivelongitudinal.com).

Multilevel Models For Intensive Longitudinal Data With Heterogeneous Error Structure

Author : Seungmin Jahng
ISBN : OCLC:689998419
Genre : Analysis of covariance
File Size : 59. 74 MB
Format : PDF, Kindle
Download : 399
Read : 715

Download Now


Recent developments in data collection methods in the behavioral and social sciences, such as Ecological Momentary Assessment (EMA) enables researchers to gather intensive longitudinal data (ILD) and to examine more detailed features of intraindividual variation of a variable(s) over time. Due to its high intensity of assessments within individuals, ILD often has different characteristics from traditional longitudinal data with a few measurement occasions and requires different assumptions of statistical models in use. In the present thesis, issues in the analysis of ILD and problems of current use of statistical models for the analysis of ILD are discussed and investigated. Specifically, the issue of heterogeneity of autocorrelation and variance across individuals in ILD is extensively studied for multilevel models (MLMs). In chapter 2, a brief introduction to multilevel models and issues in modeling residual covariance structure in MLMs are provided and discussed. In chapter 3, it is shown that bias in estimation of parameters in MLMs under homogeneity assumption is not ignorable when autocorrelation differs across individuals and its average is high. It is also shown that a transformation method, which multiplies variables in the model by the inverse of Cholesky factor of individual-specific error covariance, attenuates the bias for ILD. Chapter 4 reviews variance function models for heterogeneous variance and introduces a two-step MLM approach for modeling heterogeneous variance using squared residuals. A simulation study showed that the two-step MLM does not suffer from non-convergence and is applicable to ILD.

Handling Missing Data In The Modeling Of Intensive Longitudinal Data

Author : Linying Ji
ISBN : OCLC:951477328
Genre :
File Size : 52. 7 MB
Format : PDF, Kindle
Download : 262
Read : 495

Download Now


The availability of intensive longitudinal data has helped spur the use more sophisticated methods for studying change. Unfortunately, missing data issues also arise frequently in such studies. Conventional missing data approaches are fraught with additional computational challenges when applied to intensive longitudinal data, and may not always be applicable due to the broad-ranging measurement characteristics of the covariates. In this study, we consider and illustrate the use of two approaches for implementing multiple imputing (MI) to cope with the missingness in fitting multivariate time series models, including a full MI approach, in which all missing cases are imputed simultaneously, and a partial MI approach, in which missing covariates are imputed with multiple imputation, while missingness in dependent variables are handled with full information maximum likelihood estimation. The performance of these approaches was examined under assumptions of missing completely at random, missing at random, and nonignorable missingness. The advantages and limitations of each approach are evaluated using a simulation study. We further demonstrate the implementation of the procedure in R using empirical data, involving n=111 families in which children's influences on parental conflicts are modeled as covariates over the course of 15 days.

Longitudinal Analysis

Author : Lesa Hoffman
ISBN : 9781317591085
Genre : Psychology
File Size : 32. 67 MB
Format : PDF, ePub, Docs
Download : 906
Read : 587

Download Now


Longitudinal Analysis provides an accessible, application-oriented treatment of introductory and advanced linear models for within-person fluctuation and change. Organized by research design and data type, the text uses in-depth examples to provide a complete description of the model-building process. The core longitudinal models and their extensions are presented within a multilevel modeling framework, paying careful attention to the modeling concerns that are unique to longitudinal data. Written in a conversational style, the text provides verbal and visual interpretation of model equations to aid in their translation to empirical research results. Overviews and summaries, boldfaced key terms, and review questions will help readers synthesize the key concepts in each chapter. Written for non-mathematically-oriented readers, this text features: A description of the data manipulation steps required prior to model estimation so readers can more easily apply the steps to their own data An emphasis on how the terminology, interpretation, and estimation of familiar general linear models relates to those of more complex models for longitudinal data Integrated model comparisons, effect sizes, and statistical inference in each example to strengthen readers’ understanding of the overall model-building process Sample results sections for each example to provide useful templates for published reports Examples using both real and simulated data in the text, along with syntax and output for SPSS, SAS, STATA, and Mplus at www.PilesOfVariance.com to help readers apply the models to their own data The book opens with the building blocks of longitudinal analysis—general ideas, the general linear model for between-person analysis, and between- and within-person models for the variance and the options within repeated measures analysis of variance. Section 2 introduces unconditional longitudinal models including alternative covariance structure models to describe within-person fluctuation over time and random effects models for within-person change. Conditional longitudinal models are presented in section 3, including both time-invariant and time-varying predictors. Section 4 reviews advanced applications, including alternative metrics of time in accelerated longitudinal designs, three-level models for multiple dimensions of within-person time, the analysis of individuals in groups over time, and repeated measures designs not involving time. The book concludes with additional considerations and future directions, including an overview of sample size planning and other model extensions for non-normal outcomes and intensive longitudinal data. Class-tested at the University of Nebraska-Lincoln and in intensive summer workshops, this is an ideal text for graduate-level courses on longitudinal analysis or general multilevel modeling taught in psychology, human development and family studies, education, business, and other behavioral, social, and health sciences. The book’s accessible approach will also help those trying to learn on their own. Only familiarity with general linear models (regression, analysis of variance) is needed for this text.

Longitudinal Data Analysis Using Structural Equation Models

Author : John J. McArdle
ISBN : 1433817152
Genre : Mathematics
File Size : 29. 45 MB
Format : PDF, Mobi
Download : 607
Read : 171

Download Now


When determining the most appropriate method for analyzing longitudinal data, you must first consider what research question you want to answer. McArdle and Nesselroade identify five basic purposes of longitudinal structural equation modeling. For each purpose, they present the most useful strategies and models. Two important but underused approaches are emphasized: multiple factorial invariance over time and latent change scores. This volume covers a wealth of models in a straightforward, understandable manner. Rather than overwhelm the reader with an extensive amount of algebra, the authors use path diagrams and emphasize methods that are appropriate for many uses. Book jacket.

Top Download:

Best Books