modern directional statistics interdisciplinary statistics

Download Book Modern Directional Statistics Interdisciplinary Statistics in PDF format. You can Read Online Modern Directional Statistics Interdisciplinary Statistics here in PDF, EPUB, Mobi or Docx formats.

Modern Directional Statistics

Author : Christophe Ley
ISBN : 9781351645782
Genre : Computers
File Size : 44. 42 MB
Format : PDF
Download : 930
Read : 889

Get This Book


Modern Directional Statistics collects important advances in methodology and theory for directional statistics over the last two decades. It provides a detailed overview and analysis of recent results that can help both researchers and practitioners. Knowledge of multivariate statistics eases the reading but is not mandatory. The field of directional statistics has received a lot of attention over the past two decades, due to new demands from domains such as life sciences or machine learning, to the availability of massive data sets requiring adapted statistical techniques, and to technological advances. This book covers important progresses in distribution theory,high-dimensional statistics, kernel density estimation, efficient inference on directional supports, and computational and graphical methods. Christophe Ley is professor of mathematical statistics at Ghent University. His research interests include semi-parametrically efficient inference, flexible modeling, directional statistics and the study of asymptotic approximations via Stein’s Method. His achievements include the Marie-Jeanne Laurent-Duhamel prize of the Société Française de Statistique and an elected membership at the International Statistical Institute. He is associate editor for the journals Computational Statistics & Data Analysis and Econometrics and Statistics. Thomas Verdebout is professor of mathematical statistics at Université libre de Bruxelles (ULB). His main research interests are semi-parametric statistics, high- dimensional statistics, directional statistics and rank-based procedures. He has won an annual prize of the Belgian Academy of Sciences and is an elected member of the International Statistical Institute. He is associate editor for the journals Statistics and Probability Letters and Journal of Multivariate Analysis.

Applied Directional Statistics

Author : Christophe Ley
ISBN : 1138626430
Genre : Circular data
File Size : 32. 60 MB
Format : PDF, Kindle
Download : 441
Read : 495

Get This Book


This book describes new data-driven methodologies and case studies.The primary targeted audience is researchers in statistics, as well as those in fundamental roles such as earth sciences, environmetrics, astrophysics, machine learning, image analysis and bioinformatics.

Directional Statistics

Author : Kanti V. Mardia
ISBN : 9780470317815
Genre : Mathematics
File Size : 49. 56 MB
Format : PDF, ePub, Docs
Download : 242
Read : 781

Get This Book


Presents new and up-dated material on both the underlying theory and the practical methodology of directional statistics, helping the reader to utilise and develop the techniques appropriate to their work. The book is divided into three parts. The first part concentrates on statistics on the circle. Topics covered include tests of uniformity, tests of good-of-fit, inference on von Mises distributions and non-parametric methods. The second part considers statistics on spheres of arbitrary dimension, and includes a detailed account of inference on the main distributions on spheres. Recent material on correlation, regression time series, robust techniques, bootstrap methods, density estimation and curve fitting is presented. The third part considers statistics on more general sample spaces, in particular rotation groups, Stiefel manifolds, Grassmann manifolds and complex projective spaces. Shape analysis is considered from the perspective of directional statistics. Written by leading authors in the field, this text will be invaluable not only to researchers in probability and statistics interested in the latest developments in directional statistics, but also to practitioners and researchers in many scientific fields, including astronomy, biology, computer vision, earth sciences and image analysis.

Statistical Paradigms

Author : Ashis SenGupta
ISBN : 9789814644112
Genre : Mathematics
File Size : 33. 22 MB
Format : PDF, Docs
Download : 171
Read : 1235

Get This Book


This volume consists of a collection of research articles on classical and emerging Statistical Paradigms — parametric, non-parametric and semi-parametric, frequentist and Bayesian — encompassing both theoretical advances and emerging applications in a variety of scientific disciplines. For advances in theory, the topics include: Bayesian Inference, Directional Data Analysis, Distribution Theory, Econometrics and Multiple Testing Procedures. The areas in emerging applications include: Bioinformatics, Factorial Experiments and Linear Models, Hotspot Geoinformatics and Reliability. Contents:Reviews:Weak Paradoxes and Paradigms (Jayanta K Ghosh)Nonparametrics in Modern Interdisciplinary Research: Some Perspectives and Prospectives (Pranab K Sen)Parametric:Bounds on Distributions Involving Partial, Marginal and Conditional Information: The Consequences of Incomplete Prior Specification (Barry C Arnold)Stepdown Procedures Controlling a Generalized False Discovery Rate (Wenge Guo and Sanat K Sarkar)On Confidence Intervals for Expected Response in 2n Factorial Experiments with Exponentially Distributed Response Variables (H V Kulkarni and S C Patil)Predictive Influence of Variables in a Linear Regression Model when the Moment Matrix is Singular (Md Nurul Haque Mollah and S K Bhattacharjee)New Wrapped Distributions — Goodness of Fit (A V Dattatreya Rao, I Ramabhadra Sarma and S V S Girija)Semi-Parametric:Non-Stationary Samples and Meta-Distribution (Dominique Guégan)MDL Model Selection Criterion for Mixed Models with an Application to Spline Smoothing (Antti Liski and Erkki P Liski)Digital Governance and Hotspot Geoinformatics with Continuous Fractional Response (G P Patil, S W Joshi and R E Koli)Bayesian Curve Registration of Functional Data (Z Zhong, A Majumdar and R L Eubank)Non-Parametric & Probability:Nonparametric Estimation in a One-Way Error Component Model: A Monte Carlo Analysis (Daniel J Henderson and Aman Ullah)GERT Analysis of Consecutive-k Systems: An Overview (Kanwar Sen, Manju Agarwal and Pooja Mohan)Moment Bounds for Strong-Mixing Processes with Applications (Ratan Dasgupta) Readership: Researchers, professionals and advanced students working on Bayesian and frequentist approaches to statistical modeling and on interfaces for both theory and applications. Key Features:A scholarly and motivating review of non-parametric methods by P K Sen, winner of the Wilks Medal in 2010Discussion of paradoxes of the frequentist and Bayesian paradigms, related counterexamples, and their implicationsStands out in terms of the width and depthKeywords:Bayesian Inference;Design of Experiments;Econometrics;Hotspot Geoinformatics;Linear Models and Regression Analysis;Multiple Testing Procedures;Probability Distributions for Linear and Directional Data;Reliability

Bayesian Methods In Structural Bioinformatics

Author : Thomas Hamelryck
ISBN : 9783642272257
Genre : Medical
File Size : 77. 59 MB
Format : PDF, ePub, Mobi
Download : 657
Read : 478

Get This Book


This book is an edited volume, the goal of which is to provide an overview of the current state-of-the-art in statistical methods applied to problems in structural bioinformatics (and in particular protein structure prediction, simulation, experimental structure determination and analysis). It focuses on statistical methods that have a clear interpretation in the framework of statistical physics, rather than ad hoc, black box methods based on neural networks or support vector machines. In addition, the emphasis is on methods that deal with biomolecular structure in atomic detail. The book is highly accessible, and only assumes background knowledge on protein structure, with a minimum of mathematical knowledge. Therefore, the book includes introductory chapters that contain a solid introduction to key topics such as Bayesian statistics and concepts in machine learning and statistical physics.

Statistical Analysis Of Circular Data

Author : N. I. Fisher
ISBN : 0521568900
Genre : Mathematics
File Size : 83. 48 MB
Format : PDF, ePub, Docs
Download : 195
Read : 954

Get This Book


This book provides a unified and up-to-date account of techniques for handling circular data, and will interest all who perform data analyses.

Circular Statistics In R

Author : Arthur Pewsey
ISBN : 9780191650765
Genre : Mathematics
File Size : 72. 54 MB
Format : PDF, Mobi
Download : 341
Read : 801

Get This Book


Circular Statistics in R provides the most comprehensive guide to the analysis of circular data in over a decade. Circular data arise in many scientific contexts whether it be angular directions such as: observed compass directions of departure of radio-collared migratory birds from a release point; bond angles measured in different molecules; wind directions at different times of year at a wind farm; direction of stress-fractures in concrete bridge supports; longitudes of earthquake epicentres or seasonal and daily activity patterns, for example: data on the times of day at which animals are caught in a camera trap, or in 911 calls in New York, or in internet traffic; variation throughout the year in measles incidence, global energy requirements, TV viewing figures or injuries to athletes. The natural way of representing such data graphically is as points located around the circumference of a circle, hence their name. Importantly, circular variables are periodic in nature and the origin, or zero point, such as the beginning of a new year, is defined arbitrarily rather than necessarily emerging naturally from the system. This book will be of value both to those new to circular data analysis as well as those more familiar with the field. For beginners, the authors start by considering the fundamental graphical and numerical summaries used to represent circular data before introducing distributions that might be used to model them. They go on to discuss basic forms of inference such as point and interval estimation, as well as formal significance tests for hypotheses that will often be of scientific interest. When discussing model fitting, the authors advocate reduced reliance on the classical von Mises distribution; showcasing distributions that are capable of modelling features such as asymmetry and varying levels of kurtosis that are often exhibited by circular data. The use of likelihood-based and computer-intensive approaches to inference and modelling are stressed throughout the book. The R programming language is used to implement the methodology, particularly its "circular" package. Also provided are over 150 new functions for techniques not already covered within R. This concise but authoritative guide is accessible to the diverse range of scientists who have circular data to analyse and want to do so as easily and as effectively as possible.

Survival Analysis With Interval Censored Data

Author : Kris Bogaerts
ISBN : 9781420077483
Genre : Mathematics
File Size : 39. 80 MB
Format : PDF, Kindle
Download : 480
Read : 559

Get This Book


Survival Analysis with Interval-Censored Data: A Practical Approach with Examples in R, SAS, and BUGS provides the reader with a practical introduction into the analysis of interval-censored survival times. Although many theoretical developments have appeared in the last fifty years, interval censoring is often ignored in practice. Many are unaware of the impact of inappropriately dealing with interval censoring. In addition, the necessary software is at times difficult to trace. This book fills in the gap between theory and practice. Features: -Provides an overview of frequentist as well as Bayesian methods. -Include a focus on practical aspects and applications. -Extensively illustrates the methods with examples using R, SAS, and BUGS. Full programs are available on a supplementary website. The authors: Kris Bogaerts is project manager at I-BioStat, KU Leuven. He received his PhD in science (statistics) at KU Leuven on the analysis of interval-censored data. He has gained expertise in a great variety of statistical topics with a focus on the design and analysis of clinical trials. Arnošt Komárek is associate professor of statistics at Charles University, Prague. His subject area of expertise covers mainly survival analysis with the emphasis on interval-censored data and classification based on longitudinal data. He is past chair of the Statistical Modelling Society?and editor of?Statistical Modelling: An International Journal. Emmanuel Lesaffre is professor of biostatistics at I-BioStat, KU Leuven. His research interests include Bayesian methods, longitudinal data analysis, statistical modelling, analysis of dental data, interval-censored data, misclassification issues, and clinical trials. He is the founding chair of the?Statistical Modelling Society, past-president of the?International Society for Clinical Biostatistics,?and fellow of?ISI?and?ASA.

Modern Interdisciplinary University Statistics Education

Author : Committee on Applied and Theoretical Statistics
ISBN : 9780309586382
Genre : Education
File Size : 56. 15 MB
Format : PDF, ePub, Docs
Download : 280
Read : 586

Get This Book


This book examines how the discipline of statistics should respond to the changing environment in which statisticians work. What does the academic, industry, and government customer need? How can the content of courses and of the overall statistics educational experience be arranged to address the customer's needs? Interdisciplinary needs are described, and successful university programs in interdisciplinary statistics are detailed.

Flexible Imputation Of Missing Data Second Edition

Author : Stef van Buuren
ISBN : 9780429960345
Genre : Mathematics
File Size : 66. 99 MB
Format : PDF, Docs
Download : 361
Read : 859

Get This Book


Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.

Top Download:

Best Books