# neural networks and statistical learning

**Download Book Neural Networks And Statistical Learning in PDF format. You can Read Online Neural Networks And Statistical Learning here in PDF, EPUB, Mobi or Docx formats.**

## Neural Networks And Statistical Learning

**Author :**Ke-Lin Du

**ISBN :**9781447155713

**Genre :**Computers

**File Size :**64. 54 MB

**Format :**PDF, ePub, Mobi

**Download :**545

**Read :**500

Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included. Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence, and data mining.

## Neural Networks And Statistical Learning

**Author :**Ke-Lin Du

**ISBN :**144715570X

**Genre :**Computers

**File Size :**58. 55 MB

**Format :**PDF, ePub, Mobi

**Download :**156

**Read :**232

Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included. Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence, and data mining.

## Algebraic Geometry And Statistical Learning Theory

**Author :**Sumio Watanabe

**ISBN :**9780521864671

**Genre :**Computers

**File Size :**26. 55 MB

**Format :**PDF, Docs

**Download :**901

**Read :**1155

Sure to be influential, Watanabe's book lays the foundations for the use of algebraic geometry in statistical learning theory. Many models/machines are singular: mixture models, neural networks, HMMs, Bayesian networks, stochastic context-free grammars are major examples. The theory achieved here underpins accurate estimation techniques in the presence of singularities.

## An Elementary Introduction To Statistical Learning Theory

**Author :**Sanjeev Kulkarni

**ISBN :**1118023463

**Genre :**Mathematics

**File Size :**79. 65 MB

**Format :**PDF

**Download :**210

**Read :**629

A thought-provoking look at statistical learning theory and its role in understanding human learning and inductive reasoning A joint endeavor from leading researchers in the fields of philosophy and electrical engineering, An Elementary Introduction to Statistical Learning Theory is a comprehensive and accessible primer on the rapidly evolving fields of statistical pattern recognition and statistical learning theory. Explaining these areas at a level and in a way that is not often found in other books on the topic, the authors present the basic theory behind contemporary machine learning and uniquely utilize its foundations as a framework for philosophical thinking about inductive inference. Promoting the fundamental goal of statistical learning, knowing what is achievable and what is not, this book demonstrates the value of a systematic methodology when used along with the needed techniques for evaluating the performance of a learning system. First, an introduction to machine learning is presented that includes brief discussions of applications such as image recognition, speech recognition, medical diagnostics, and statistical arbitrage. To enhance accessibility, two chapters on relevant aspects of probability theory are provided. Subsequent chapters feature coverage of topics such as the pattern recognition problem, optimal Bayes decision rule, the nearest neighbor rule, kernel rules, neural networks, support vector machines, and boosting. Appendices throughout the book explore the relationship between the discussed material and related topics from mathematics, philosophy, psychology, and statistics, drawing insightful connections between problems in these areas and statistical learning theory. All chapters conclude with a summary section, a set of practice questions, and a reference sections that supplies historical notes and additional resources for further study. An Elementary Introduction to Statistical Learning Theory is an excellent book for courses on statistical learning theory, pattern recognition, and machine learning at the upper-undergraduate and graduate levels. It also serves as an introductory reference for researchers and practitioners in the fields of engineering, computer science, philosophy, and cognitive science that would like to further their knowledge of the topic.

## The Elements Of Statistical Learning

**Author :**Trevor Hastie

**ISBN :**1489905189

**Genre :**Mathematics

**File Size :**67. 86 MB

**Format :**PDF, ePub

**Download :**246

**Read :**247

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

## The Elements Of Statistical Learning

**Author :**Trevor Hastie

**ISBN :**9780387216065

**Genre :**Mathematics

**File Size :**70. 7 MB

**Format :**PDF, Mobi

**Download :**430

**Read :**1200

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

## Statistical And Neural Classifiers

**Author :**Sarunas Raudys

**ISBN :**1852332972

**Genre :**Computers

**File Size :**29. 43 MB

**Format :**PDF

**Download :**352

**Read :**709

Automatic (machine) recognition, description, classification, and groupings of patterns are important problems in a variety of engineering and scientific disciplines such as biology, psychology, medicine, marketing, computer vision, artificial intelligence, and remote sensing. Given a pattern, its recognition/classification may consist of one of the following two tasks: (1) supervised classification (also called discriminant analysis); the input pattern is assigned to one of several predefined classes, (2) unsupervised classification (also called clustering); no pattern classes are defined a priori and patterns are grouped into clusters based on their similarity. Interest in the area of pattern recognition has been renewed recently due to emerging applications which are not only challenging but also computationally more demanding (e. g. , bioinformatics, data mining, document classification, and multimedia database retrieval). Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques and methods imported from statistical learning theory have received increased attention. Neural networks and statistical pattern recognition are two closely related disciplines which share several common research issues. Neural networks have not only provided a variety of novel or supplementary approaches for pattern recognition tasks, but have also offered architectures on which many well-known statistical pattern recognition algorithms can be mapped for efficient (hardware) implementation. On the other hand, neural networks can derive benefit from some well-known results in statistical pattern recognition.