# ordinary differential equations modular mathematics

**Download Book Ordinary Differential Equations Modular Mathematics in PDF format. You can Read Online Ordinary Differential Equations Modular Mathematics here in PDF, EPUB, Mobi or Docx formats.**

## Calculus And Ordinary Differential Equations

**Author :**David Pearson

**ISBN :**9780080928654

**Genre :**Mathematics

**File Size :**52. 72 MB

**Format :**PDF, ePub

**Download :**521

**Read :**480

Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.

## Ordinary Differential Equations

**Author :**William A. Adkins

**ISBN :**9781461436188

**Genre :**Mathematics

**File Size :**46. 22 MB

**Format :**PDF, Docs

**Download :**404

**Read :**200

Unlike most texts in differential equations, this textbook gives an early presentation of the Laplace transform, which is then used to motivate and develop many of the remaining differential equation concepts for which it is particularly well suited. For example, the standard solution methods for constant coefficient linear differential equations are immediate and simplified, and solution methods for constant coefficient systems are streamlined. By introducing the Laplace transform early in the text, students become proficient in its use while at the same time learning the standard topics in differential equations. The text also includes proofs of several important theorems that are not usually given in introductory texts. These include a proof of the injectivity of the Laplace transform and a proof of the existence and uniqueness theorem for linear constant coefficient differential equations. Along with its unique traits, this text contains all the topics needed for a standard three- or four-hour, sophomore-level differential equations course for students majoring in science or engineering. These topics include: first order differential equations, general linear differential equations with constant coefficients, second order linear differential equations with variable coefficients, power series methods, and linear systems of differential equations. It is assumed that the reader has had the equivalent of a one-year course in college calculus.

## Ordinary Differential Equations

**Author :**W. Cox

**ISBN :**9780340632031

**Genre :**Computers

**File Size :**58. 82 MB

**Format :**PDF, ePub, Mobi

**Download :**441

**Read :**1032

Building on introductory calculus courses, this text provides a sound foundation in the underlying principles of ordinary differential equations. Important concepts, including uniqueness and existence theorems, are worked through in detail and the student is encouraged to develop much of the routine material themselves, thus helping to ensure a solid understanding of the fundamentals required. The wide use of exercises, problems and self-assessment questions helps to promote a deeper understanding of the material and it is developed in such a way that it lays the groundwork for further study of partial differential equations.

## Linear Differential Equations And Group Theory From Riemann To Poincare

**Author :**Jeremy Gray

**ISBN :**9780817647735

**Genre :**Mathematics

**File Size :**67. 49 MB

**Format :**PDF, Kindle

**Download :**312

**Read :**555

This book is a study of how a particular vision of the unity of mathematics, often called geometric function theory, was created in the 19th century. The central focus is on the convergence of three mathematical topics: the hypergeometric and related linear differential equations, group theory, and on-Euclidean geometry. The text for this second edition has been greatly expanded and revised, and the existing appendices enriched. The exercises have been retained, making it possible to use the book as a companion to mathematics courses at the graduate level.

## A Workbook For Differential Equations

**Author :**Bernd S. W. Schröder

**ISBN :**9780470447512

**Genre :**Mathematics

**File Size :**74. 39 MB

**Format :**PDF, ePub

**Download :**784

**Read :**188

An accessible and hands-on approach to modeling and predicting real-world phenomena using differential equations A Workbook for Differential Equations presents an interactive introduction to fundamental solution methods for ordinary differential equations. The author emphasizes the importance of manually working through computations and models, rather than simply reading or memorizing formulas. Utilizing real-world applications from spring-mass systems and circuits to vibrating strings and an overview of the hydrogen atom, the book connects modern research with the presented topics, including first order equations, constant coefficient equations, Laplace transforms, partial differential equations, series solutions, systems, and numerical methods. The result is a unique guide to understanding the significance of differential equations in mathematics, science, and engineering. The workbook contains modules that involve readers in as many ways as possible, and each module begins with "Prerequisites" and "Learning Objectives" sections that outline both the skills needed to understand the presented material and what new skills will be obtained by the conclusion of the module. Detailed applications are intertwined in the discussion, motivating the investigation of new classes of differential equations and their accompanying techniques. Introductory modeling sections discuss applications and why certain known solution techniques may not be enough to successfully analyze certain situations. Almost every module concludes with a section that contains various projects, ranging from programming tasks to theoretical investigations. The book is specifically designed to promote the development of effective mathematical reading habits such as double-checking results and filling in omitted steps in a computation. Rather than provide lengthy explanations of what readers should do, good habits are demonstrated in short sections, and a wide range of exercises provide the opportunity to test reader comprehension of the concepts and techniques. Rich illustrations, highlighted notes, and boxed comments offer illuminating explanations of the computations. The material is not specific to any one particular software package, and as a result, necessary algorithms can be implemented in various programs, including Mathematica®, Maple, and Mathcad®. The book's related Web site features supplemental slides as well as videos that discuss additional topics such as homogeneous first order equations, the general solution of separable differential equations, and the derivation of the differential equations for a multi-loop circuit. In addition, twenty activities are included at the back of the book, allowing for further practice of discussed topics whether in the classroom or for self-study. With its numerous pedagogical features that consistently engage readers, A Workbook for Differential Equations is an excellent book for introductory courses in differential equations and applied mathematics at the undergraduate level. It is also a suitable reference for professionals in all areas of science, physics, and engineering.

## Ordinary Differential Equations And Dynamical Systems

**Author :**Gerald Teschl

**ISBN :**9780821883280

**Genre :**Mathematics

**File Size :**71. 61 MB

**Format :**PDF, Mobi

**Download :**152

**Read :**926

This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm-Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincare-Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman-Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale-Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

## Differential Equation Models

**Author :**Martin Braun

**ISBN :**9781461254270

**Genre :**Mathematics

**File Size :**65. 88 MB

**Format :**PDF, Mobi

**Download :**557

**Read :**683

The purpose of this four volume series is to make available for college teachers and students samples of important and realistic applications of mathematics which can be covered in undergraduate programs. The goal is to provide illustrations of how modem mathematics is actually employed to solve relevant contemporary problems. Although these independent chapters were prepared primarily for teachers in the general mathematical sciences, they should prove valuable to students, teachers, and research scientists in many of the fields of application as well. Prerequisites for each chapter and suggestions for the teacher are provided. Several of these chapters have been tested in a variety of classroom settings, and all have undergone extensive peer review and revision. Illustrations and exercises are included in most chapters. Some units can be covered in one class, whereas others provide sufficient material for a few weeks of class time. Volume 1 contains 23 chapters and deals with differential equations and, in the last four chapters, problems leading to partial differential equations. Applications are taken from medicine, biology, traffic systems and several other fields. The 14 chapters in Volume 2 are devoted mostly to problems arising in political science, but they also address questions appearing in sociology and ecology. Topics covered include voting systems, weighted voting, proportional representation, coalitional values, and committees. The 14 chapters in Volume 3 emphasize discrete mathematical methods such as those which arise in graph theory, combinatorics, and networks.

## Elementary Differential Equations

**Author :**William E. Boyce

**ISBN :**047143339X

**Genre :**Mathematics

**File Size :**68. 52 MB

**Format :**PDF, Docs

**Download :**384

**Read :**1188

This revision of Boyce & DiPrima's text maintains its classic strengths: a contemporary approach with flexible chapter construction, clear exposition, and outstanding problems. Like previous editions, this revision is written from the viewpoint of the applied mathematician, focusing both on the theory and the practical applications of Differential Equations as they apply to engineering and the sciences. A perennial best seller designed for engineers and scientists who need to use Elementary Differential Equations in their work and studies. The CD-ROM includes: The award-winning ODE Architect software. The software's 14 modules enable you to build and solve your own ODEs, and to use simulations and multimedia to develop detailed mathematical models and concepts in a truly interactive environment. The ODE Architect Companion. The Companion extends the ideas featured in each multimedia module. The web-based learning tools include: Review & Study Guidelines. The Chapter Review Guidelines will help you prepare for quizzes and exams. Online Review Quizzes. The quizzes enable you to test your knowledge of key concepts and provide diagnostic feedback that references appropriate sections in the text. PowerPoint Slides. You can print these slides out for in-class note taking. Getting Started with ODE Architect. This guide will help you get up-and-running with ODE Architect's simulations and multimedia.

## Encyclopaedia Of Mathematics

**Author :**Michiel Hazewinkel

**ISBN :**9789400903654

**Genre :**Mathematics

**File Size :**71. 93 MB

**Format :**PDF, Kindle

**Download :**209

**Read :**989

This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.

## Asymptotic Methods For Ordinary Differential Equations

**Author :**R.P. Kuzmina

**ISBN :**9789401593472

**Genre :**Mathematics

**File Size :**58. 88 MB

**Format :**PDF, ePub, Mobi

**Download :**236

**Read :**727

In this book we consider a Cauchy problem for a system of ordinary differential equations with a small parameter. The book is divided into th ree parts according to three ways of involving the small parameter in the system. In Part 1 we study the quasiregular Cauchy problem. Th at is, a problem with the singularity included in a bounded function j , which depends on time and a small parameter. This problem is a generalization of the regu larly perturbed Cauchy problem studied by Poincare [35]. Some differential equations which are solved by the averaging method can be reduced to a quasiregular Cauchy problem. As an example, in Chapter 2 we consider the van der Pol problem. In Part 2 we study the Tikhonov problem. This is, a Cauchy problem for a system of ordinary differential equations where the coefficients by the derivatives are integer degrees of a small parameter.