primality testing for beginners student mathematical library

Download Book Primality Testing For Beginners Student Mathematical Library in PDF format. You can Read Online Primality Testing For Beginners Student Mathematical Library here in PDF, EPUB, Mobi or Docx formats.

Primality Testing For Beginners

Author : Lasse Rempe-Gillen
ISBN : 9780821898833
Genre : Mathematics
File Size : 75. 99 MB
Format : PDF, Mobi
Download : 479
Read : 303

Download Now


How can you tell whether a number is prime? What if the number has hundreds or thousands of digits? This question may seem abstract or irrelevant, but in fact, primality tests are performed every time we make a secure online transaction. In 2002, Agrawal, Kayal, and Saxena answered a long-standing open question in this context by presenting a deterministic test (the AKS algorithm) with polynomial running time that checks whether a number is prime or not. What is more, their methods are essentially elementary, providing us with a unique opportunity to give a complete explanation of a current mathematical breakthrough to a wide audience. Rempe-Gillen and Waldecker introduce the aspects of number theory, algorithm theory, and cryptography that are relevant for the AKS algorithm and explain in detail why and how this test works. This book is specifically designed to make the reader familiar with the background that is necessary to appreciate the AKS algorithm and begins at a level that is suitable for secondary school students, teachers, and interested amateurs. Throughout the book, the reader becomes involved in the topic by means of numerous exercises.

Applied Number Theory

Author : Harald Niederreiter
ISBN : 9783319223216
Genre : Mathematics
File Size : 31. 25 MB
Format : PDF, ePub, Docs
Download : 730
Read : 815

Download Now


This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas. Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars’ GPS systems, in online banking, etc. Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters 2-5 and offer a glimpse of advanced results that are presented without proofs and require more advanced mathematical skills. In the last chapter they review several further applications of number theory, ranging from check-digit systems to quantum computation and the organization of raster-graphics memory. Upper-level undergraduates, graduates and researchers in the field of number theory will find this book to be a valuable resource.

The Joy Of Factoring

Author : Samuel S. Wagstaff (Jr.)
ISBN : 9781470410483
Genre : Mathematics
File Size : 87. 97 MB
Format : PDF
Download : 789
Read : 678

Download Now


This book is about the theory and practice of integer factorisation presented in a historic perspective. It describes about twenty algorithms for factoring and a dozen other number theory algorithms that support the factoring algorithms. Most algorithms are described both in words and in pseudocode to satisfy both number theorists and computer scientists. Each of the ten chapters begins with a concise summary of its contents. The book starts with a general explanation of why factoring integers is important. The next two chapters present number theory results that are relevant to factoring. Further on there is a chapter discussing, in particular, mechanical and electronic devices for factoring, as well as factoring using quantum physics and DNA molecules. Another chapter applies factoring to breaking certain cryptographic algorithms. Yet another chapter is devoted to practical vs. theoretical aspects of factoring. The book contains more than 100 examples illustrating various algorithms and theorems. It also contains more than 100 interesting exercises to test the reader's understanding. Hints or answers are given for about a third of the exercises. The book concludes with a dozen suggestions of possible new methods for factoring integers. This book is written for readers who want to learn more about the best methods of factoring integers, many reasons for factoring, and some history of this fascinating subject. It can be read by anyone who has taken a first course in number theory.

Factorization And Primality Testing

Author : David M. Bressoud
ISBN : 9781461245445
Genre : Mathematics
File Size : 32. 5 MB
Format : PDF, ePub, Mobi
Download : 365
Read : 875

Download Now


"About binomial theorems I'm teeming with a lot of news, With many cheerful facts about the square on the hypotenuse. " - William S. Gilbert (The Pirates of Penzance, Act I) The question of divisibility is arguably the oldest problem in mathematics. Ancient peoples observed the cycles of nature: the day, the lunar month, and the year, and assumed that each divided evenly into the next. Civilizations as separate as the Egyptians of ten thousand years ago and the Central American Mayans adopted a month of thirty days and a year of twelve months. Even when the inaccuracy of a 360-day year became apparent, they preferred to retain it and add five intercalary days. The number 360 retains its psychological appeal today because it is divisible by many small integers. The technical term for such a number reflects this appeal. It is called a "smooth" number. At the other extreme are those integers with no smaller divisors other than 1, integers which might be called the indivisibles. The mystic qualities of numbers such as 7 and 13 derive in no small part from the fact that they are indivisibles. The ancient Greeks realized that every integer could be written uniquely as a product of indivisibles larger than 1, what we appropriately call prime numbers. To know the decomposition of an integer into a product of primes is to have a complete description of all of its divisors.

Higher Arithmetic

Author : Harold M. Edwards
ISBN : 0821844393
Genre : Mathematics
File Size : 26. 38 MB
Format : PDF, Mobi
Download : 303
Read : 784

Download Now


Although number theorists have sometimes shunned and even disparaged computation in the past, today's applications of number theory to cryptography and computer security demand vast arithmetical computations. These demands have shifted the focus of studies in number theory and have changed attitudes toward computation itself. The important new applications have attracted a great many students to number theory, but the best reason for studying the subject remains what it was when Gauss published his classic Disquisitiones Arithmeticae in 1801: Number theory is the equal of Euclidean geometry--some would say it is superior to Euclidean geometry--as a model of pure, logical, deductive thinking. An arithmetical computation, after all, is the purest form of deductive argument. Higher Arithmetic explains number theory in a way that gives deductive reasoning, including algorithms and computations, the central role. Hands-on experience with the application of algorithms to computational examples enables students to master the fundamental ideas of basic number theory. This is a worthwhile goal for any student of mathematics and an essential one for students interested in the modern applications of number theory. Harold M. Edwards is Emeritus Professor of Mathematics at New York University. His previous books are Advanced Calculus (1969, 1980, 1993), Riemann's Zeta Function (1974, 2001), Fermat's Last Theorem (1977), Galois Theory (1984), Divisor Theory (1990), Linear Algebra (1995), and Essays in Constructive Mathematics (2005). For his masterly mathematical exposition he was awarded a Steele Prize as well as a Whiteman Prize by the American Mathematical Society.

Introduction To Experimental Mathematics

Author : Søren Eilers
ISBN : 9781107156135
Genre : Computers
File Size : 40. 76 MB
Format : PDF, Mobi
Download : 923
Read : 1146

Download Now


Mathematics is not, and never will be, an empirical science, but mathematicians are finding that the use of computers and specialized software allows the generation of mathematical insight in the form of conjectures and examples, which pave the way for theorems and their proofs. In this way, the experimental approach to pure mathematics is revolutionizing the way research mathematicians work. As the first of its kind, this book provides material for a one-semester course in experimental mathematics that will give students the tools and training needed to systematically investigate and develop mathematical theory using computer programs written in Maple. Accessible to readers without prior programming experience, and using examples of concrete mathematical problems to illustrate a wide range of techniques, the book gives a thorough introduction to the field of experimental mathematics, which will prepare students for the challenge posed by open mathematical problems.

Thirty Three Miniatures

Author : Jiří Matoušek
ISBN : 9780821849774
Genre : Mathematics
File Size : 74. 48 MB
Format : PDF
Download : 437
Read : 1034

Download Now


This volume contains a collection of clever mathematical applications of linear algebra, mainly in combinatorics, geometry, and algorithms. Each chapter covers a single main result with motivation and full proof in at most ten pages and can be read independently of all other chapters (with minor exceptions), assuming only a modest background in linear algebra. The topics include a number of well-known mathematical gems, such as Hamming codes, the matrix-tree theorem, the Lovasz bound on the Shannon capacity, and a counterexample to Borsuk's conjecture, as well as other, perhaps less popular but similarly beautiful results, e.g., fast associativity testing, a lemma of Steinitz on ordering vectors, a monotonicity result for integer partitions, or a bound for set pairs via exterior products. The simpler results in the first part of the book provide ample material to liven up an undergraduate course of linear algebra. The more advanced parts can be used for a graduate course of linear-algebraic methods or for seminar presentations. Table of Contents: Fibonacci numbers, quickly; Fibonacci numbers, the formula; The clubs of Oddtown; Same-size intersections; Error-correcting codes; Odd distances; Are these distances Euclidean?; Packing complete bipartite graphs; Equiangular lines; Where is the triangle?; Checking matrix multiplication; Tiling a rectangle by squares; Three Petersens are not enough; Petersen, Hoffman-Singleton, and maybe 57; Only two distances; Covering a cube minus one vertex; Medium-size intersection is hard to avoid; On the difficulty of reducing the diameter; The end of the small coins; Walking in the yard; Counting spanning trees; In how many ways can a man tile a board?; More bricks--more walls?; Perfect matchings and determinants; Turning a ladder over a finite field; Counting compositions; Is it associative?; The secret agent and umbrella; Shannon capacity of the union: a tale of two fields; Equilateral sets; Cutting cheaply using eigenvectors; Rotating the cube; Set pairs and exterior products; Index. (STML/53)

Algebra F R Einsteiger

Author : Jörg Bewersdorff
ISBN : 9780821838174
Genre : Mathematics
File Size : 32. 82 MB
Format : PDF
Download : 878
Read : 401

Download Now


Galois theory is the culmination of a centuries-long search for a solution to the classical problem of solving algebraic equations by radicals. In this book, Bewersdorff follows the historical development of the theory, emphasizing concrete examples along the way. As a result, many mathematical abstractions are now seen as the natural consequence of particular investigations. Few prerequisites are needed beyond general college mathematics, since the necessary ideas and properties of groups and fields are provided as needed.Results in Galois theory are formulated first in a concrete, elementary way, then in the modern form. Each chapter begins with a simple question that gives the reader an idea of the nature and difficulty of what lies ahead. The applications of the theory to geometric constructions, including the ancient problems of squaring the circle, duplicating the cube, and trisecting an angle, and the construction of regular $n$-gons are also presented. This book is suitable for undergraduates and beginning graduate students.

Bulletin Of The Ams

Author :
ISBN : UOM:39076002531262
Genre : Mathematics
File Size : 25. 96 MB
Format : PDF, ePub
Download : 270
Read : 301

Download Now



Game Theory And Strategy

Author : Philip D. Straffin
ISBN : 0883856379
Genre : Mathematics
File Size : 48. 95 MB
Format : PDF, Kindle
Download : 343
Read : 522

Download Now


This book pays careful attention to applications of game theory in a wide variety of disciplines. The applications are treated in considerable depth. The book assumes only high school algebra, yet gently builds to mathematical thinking of some sophistication. Game Theory and Strategy might serve as an introduction to both axiomatic mathematical thinking and the fundamental process of mathematical modelling. It gives insight into both the nature of pure mathematics, and the way in which mathematics can be applied to real problems.

Top Download:

Best Books