# primality testing for beginners student mathematical library

**Download Book Primality Testing For Beginners Student Mathematical Library in PDF format. You can Read Online Primality Testing For Beginners Student Mathematical Library here in PDF, EPUB, Mobi or Docx formats.**

## Primality Testing For Beginners

**Author :**Lasse Rempe-Gillen

**ISBN :**9780821898833

**Genre :**Mathematics

**File Size :**78. 81 MB

**Format :**PDF, ePub

**Download :**597

**Read :**1296

How can you tell whether a number is prime? What if the number has hundreds or thousands of digits? This question may seem abstract or irrelevant, but in fact, primality tests are performed every time we make a secure online transaction. In 2002, Agrawal, Kayal, and Saxena answered a long-standing open question in this context by presenting a deterministic test (the AKS algorithm) with polynomial running time that checks whether a number is prime or not. What is more, their methods are essentially elementary, providing us with a unique opportunity to give a complete explanation of a current mathematical breakthrough to a wide audience. Rempe-Gillen and Waldecker introduce the aspects of number theory, algorithm theory, and cryptography that are relevant for the AKS algorithm and explain in detail why and how this test works. This book is specifically designed to make the reader familiar with the background that is necessary to appreciate the AKS algorithm and begins at a level that is suitable for secondary school students, teachers, and interested amateurs. Throughout the book, the reader becomes involved in the topic by means of numerous exercises.

## Applied Number Theory

**Author :**Harald Niederreiter

**ISBN :**9783319223216

**Genre :**Mathematics

**File Size :**29. 66 MB

**Format :**PDF, ePub

**Download :**963

**Read :**828

This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas. Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars’ GPS systems, in online banking, etc. Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters 2-5 and offer a glimpse of advanced results that are presented without proofs and require more advanced mathematical skills. In the last chapter they review several further applications of number theory, ranging from check-digit systems to quantum computation and the organization of raster-graphics memory. Upper-level undergraduates, graduates and researchers in the field of number theory will find this book to be a valuable resource.

## The Joy Of Factoring

**Author :**Samuel S. Wagstaff (Jr.)

**ISBN :**9781470410483

**Genre :**Mathematics

**File Size :**79. 44 MB

**Format :**PDF, Mobi

**Download :**636

**Read :**676

This book is about the theory and practice of integer factorisation presented in a historic perspective. It describes about twenty algorithms for factoring and a dozen other number theory algorithms that support the factoring algorithms. Most algorithms are described both in words and in pseudocode to satisfy both number theorists and computer scientists. Each of the ten chapters begins with a concise summary of its contents. The book starts with a general explanation of why factoring integers is important. The next two chapters present number theory results that are relevant to factoring. Further on there is a chapter discussing, in particular, mechanical and electronic devices for factoring, as well as factoring using quantum physics and DNA molecules. Another chapter applies factoring to breaking certain cryptographic algorithms. Yet another chapter is devoted to practical vs. theoretical aspects of factoring. The book contains more than 100 examples illustrating various algorithms and theorems. It also contains more than 100 interesting exercises to test the reader's understanding. Hints or answers are given for about a third of the exercises. The book concludes with a dozen suggestions of possible new methods for factoring integers. This book is written for readers who want to learn more about the best methods of factoring integers, many reasons for factoring, and some history of this fascinating subject. It can be read by anyone who has taken a first course in number theory.

## Introduction To Experimental Mathematics

**Author :**Søren Eilers

**ISBN :**9781107156135

**Genre :**Computers

**File Size :**33. 26 MB

**Format :**PDF

**Download :**154

**Read :**240

Mathematics is not, and never will be, an empirical science, but mathematicians are finding that the use of computers and specialized software allows the generation of mathematical insight in the form of conjectures and examples, which pave the way for theorems and their proofs. In this way, the experimental approach to pure mathematics is revolutionizing the way research mathematicians work. As the first of its kind, this book provides material for a one-semester course in experimental mathematics that will give students the tools and training needed to systematically investigate and develop mathematical theory using computer programs written in Maple. Accessible to readers without prior programming experience, and using examples of concrete mathematical problems to illustrate a wide range of techniques, the book gives a thorough introduction to the field of experimental mathematics, which will prepare students for the challenge posed by open mathematical problems.

## Higher Arithmetic

**Author :**Harold M. Edwards

**ISBN :**0821844393

**Genre :**Mathematics

**File Size :**46. 97 MB

**Format :**PDF, Mobi

**Download :**891

**Read :**1094

Although number theorists have sometimes shunned and even disparaged computation in the past, today's applications of number theory to cryptography and computer security demand vast arithmetical computations. These demands have shifted the focus of studies in number theory and have changed attitudes toward computation itself. The important new applications have attracted a great many students to number theory, but the best reason for studying the subject remains what it was when Gauss published his classic Disquisitiones Arithmeticae in 1801: Number theory is the equal of Euclidean geometry--some would say it is superior to Euclidean geometry--as a model of pure, logical, deductive thinking. An arithmetical computation, after all, is the purest form of deductive argument. Higher Arithmetic explains number theory in a way that gives deductive reasoning, including algorithms and computations, the central role. Hands-on experience with the application of algorithms to computational examples enables students to master the fundamental ideas of basic number theory. This is a worthwhile goal for any student of mathematics and an essential one for students interested in the modern applications of number theory. Harold M. Edwards is Emeritus Professor of Mathematics at New York University. His previous books are Advanced Calculus (1969, 1980, 1993), Riemann's Zeta Function (1974, 2001), Fermat's Last Theorem (1977), Galois Theory (1984), Divisor Theory (1990), Linear Algebra (1995), and Essays in Constructive Mathematics (2005). For his masterly mathematical exposition he was awarded a Steele Prize as well as a Whiteman Prize by the American Mathematical Society.

## Factorization And Primality Testing

**Author :**David M. Bressoud

**ISBN :**9781461245445

**Genre :**Mathematics

**File Size :**83. 65 MB

**Format :**PDF, ePub, Mobi

**Download :**99

**Read :**154

"About binomial theorems I'm teeming with a lot of news, With many cheerful facts about the square on the hypotenuse. " - William S. Gilbert (The Pirates of Penzance, Act I) The question of divisibility is arguably the oldest problem in mathematics. Ancient peoples observed the cycles of nature: the day, the lunar month, and the year, and assumed that each divided evenly into the next. Civilizations as separate as the Egyptians of ten thousand years ago and the Central American Mayans adopted a month of thirty days and a year of twelve months. Even when the inaccuracy of a 360-day year became apparent, they preferred to retain it and add five intercalary days. The number 360 retains its psychological appeal today because it is divisible by many small integers. The technical term for such a number reflects this appeal. It is called a "smooth" number. At the other extreme are those integers with no smaller divisors other than 1, integers which might be called the indivisibles. The mystic qualities of numbers such as 7 and 13 derive in no small part from the fact that they are indivisibles. The ancient Greeks realized that every integer could be written uniquely as a product of indivisibles larger than 1, what we appropriately call prime numbers. To know the decomposition of an integer into a product of primes is to have a complete description of all of its divisors.

## Combinatorial And Additive Number Theory Ii

**Author :**Melvyn B. Nathanson

**ISBN :**9783319680323

**Genre :**Mathematics

**File Size :**24. 57 MB

**Format :**PDF, Kindle

**Download :**259

**Read :**1012

Based on talks from the 2015 and 2016 Combinatorial and Additive Number Theory (CANT) workshops at the City University of New York, these proceedings offer 19 peer-reviewed and edited papers on current topics in number theory. Held every year since 2003, the workshop series surveys state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. Sumsets, partitions, convex polytopes and discrete geometry, Ramsey theory, primality testing, and cryptography are among the topics featured in this volume. Each contribution is dedicated to a specific topic that reflects the latest results by experts in the field. Researchers and graduate students interested in the current progress in number theory will find this selection of articles relevant and compelling.

## Elementary Algebraic Geometry

**Author :**Klaus Hulek

**ISBN :**9780821829523

**Genre :**Mathematics

**File Size :**40. 48 MB

**Format :**PDF, Kindle

**Download :**631

**Read :**525

This book is a true introduction to the basic concepts and techniques of algebraic geometry. The language is purposefully kept on an elementary level, avoiding sheaf theory and cohomology theory. The introduction of new algebraic concepts is always motivated by a discussion of the corresponding geometric ideas. The main point of the book is to illustrate the interplay between abstract theory and specific examples. The book contains numerous problems that illustrate the general theory. The text is suitable for advanced undergraduates and beginning graduate students. It contains sufficient material for a one-semester course. The reader should be familiar with the basic concepts of modern algebra. A course in one complex variable would be helpful, but is not necessary.

## Bulletin Of The Ams

**Author :**

**ISBN :**UOM:39076002531262

**Genre :**Mathematics

**File Size :**50. 25 MB

**Format :**PDF, ePub, Docs

**Download :**991

**Read :**1172

## Frames For Undergraduates

**Author :**Deguang Han

**ISBN :**9780821842126

**Genre :**Mathematics

**File Size :**32. 6 MB

**Format :**PDF, ePub

**Download :**610

**Read :**229

Frames for Undergraduates is an undergraduate-level introduction to the theory of frames in a Hilbert space. This book can serve as a text for a special-topics course in frame theory, but it could also be used to teach a second semester of linear algebra, using frames as an application of the theoretical concepts. It can also provide a complete and helpful resource for students doing undergraduate research projects using frames. The early chapters contain the topics from linear algebra that students need to know in order to read the rest of the book. The later chapters are devoted to advanced topics, which allow students with more experience to study more intricate types of frames. Toward that end, a Student Presentation section gives detailed proofs of fairly technical results with the intention that a student could work out these proofs independently and prepare a presentation to a class or research group. The authors have also presented some stories in the Anecdotes section about how this material has motivated and influenced their students.