programming massively parallel processors third edition a hands on approach

Download Book Programming Massively Parallel Processors Third Edition A Hands On Approach in PDF format. You can Read Online Programming Massively Parallel Processors Third Edition A Hands On Approach here in PDF, EPUB, Mobi or Docx formats.

Programming Massively Parallel Processors

Author : David B. Kirk
ISBN : 9780128119877
Genre : Computers
File Size : 47. 67 MB
Format : PDF, ePub
Download : 761
Read : 623

Get This Book


Programming Massively Parallel Processors: A Hands-on Approach, Third Edition shows both student and professional alike the basic concepts of parallel programming and GPU architecture, exploring, in detail, various techniques for constructing parallel programs. Case studies demonstrate the development process, detailing computational thinking and ending with effective and efficient parallel programs. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in-depth. For this new edition, the authors have updated their coverage of CUDA, including coverage of newer libraries, such as CuDNN, moved content that has become less important to appendices, added two new chapters on parallel patterns, and updated case studies to reflect current industry practices. Teaches computational thinking and problem-solving techniques that facilitate high-performance parallel computing Utilizes CUDA version 7.5, NVIDIA's software development tool created specifically for massively parallel environments Contains new and updated case studies Includes coverage of newer libraries, such as CuDNN for Deep Learning

Programming Massively Parallel Processors

Author : David B. Kirk
ISBN : 9780123914187
Genre : Computers
File Size : 41. 38 MB
Format : PDF, Kindle
Download : 383
Read : 1125

Get This Book


Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing

Programming Massively Parallel Processors

Author : David B. Kirk
ISBN : 0123814731
Genre : Computers
File Size : 21. 79 MB
Format : PDF, Kindle
Download : 789
Read : 820

Get This Book


Programming Massively Parallel Processors discusses the basic concepts of parallel programming and GPU architecture. Various techniques for constructing parallel programs are explored in detail. Case studies demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This book describes computational thinking techniques that will enable students to think about problems in ways that are amenable to high-performance parallel computing. It utilizes CUDA (Compute Unified Device Architecture), NVIDIA's software development tool created specifically for massively parallel environments. Studies learn how to achieve both high-performance and high-reliability using the CUDA programming model as well as OpenCL. This book is recommended for advanced students, software engineers, programmers, and hardware engineers. Teaches computational thinking and problem-solving techniques that facilitate high-performance parallel computing. Utilizes CUDA (Compute Unified Device Architecture), NVIDIA's software development tool created specifically for massively parallel environments. Shows you how to achieve both high-performance and high-reliability using the CUDA programming model as well as OpenCL.

Cuda Programming

Author : Shane Cook
ISBN : 9780124159334
Genre : Computers
File Size : 47. 76 MB
Format : PDF
Download : 391
Read : 434

Get This Book


If you need to learn CUDA but don't have experience with parallel computing, CUDA Programming: A Developer's Introduction offers a detailed guide to CUDA with a grounding in parallel fundamentals. It starts by introducing CUDA and bringing you up to speed on GPU parallelism and hardware, then delving into CUDA installation. Chapters on core concepts including threads, blocks, grids, and memory focus on both parallel and CUDA-specific issues. Later, the book demonstrates CUDA in practice for optimizing applications, adjusting to new hardware, and solving common problems. Comprehensive introduction to parallel programming with CUDA, for readers new to both Detailed instructions help readers optimize the CUDA software development kit Practical techniques illustrate working with memory, threads, algorithms, resources, and more Covers CUDA on multiple hardware platforms: Mac, Linux and Windows with several NVIDIA chipsets Each chapter includes exercises to test reader knowledge

Cuda Application Design And Development

Author : Rob Farber
ISBN : 9780123884268
Genre : Computers
File Size : 59. 96 MB
Format : PDF, ePub
Download : 742
Read : 260

Get This Book


Machine generated contents note: 1. How to think in CUDA 2. Tools to build, debug and profile 3. The GPU performance envelope 4. The CUDA memory subsystems 5. Exploiting the CUDA execution grid 6. MultiGPU applications and scaling 7. Numerical CUDA, libraries and high-level language bindings 8. Mixing CUDA with rendering 9. High Performance Machine Learning 10. Scientific Visualization 11. Multimedia with OpenCV 12. Ultra Low-power Devices: Tegra.

An Introduction To Parallel Programming

Author : Peter Pacheco
ISBN : 0080921442
Genre : Computers
File Size : 72. 1 MB
Format : PDF, Docs
Download : 279
Read : 1107

Get This Book


An Introduction to Parallel Programming is the first undergraduate text to directly address compiling and running parallel programs on the new multi-core and cluster architecture. It explains how to design, debug, and evaluate the performance of distributed and shared-memory programs. The author Peter Pacheco uses a tutorial approach to show students how to develop effective parallel programs with MPI, Pthreads, and OpenMP, starting with small programming examples and building progressively to more challenging ones. The text is written for students in undergraduate parallel programming or parallel computing courses designed for the computer science major or as a service course to other departments; professionals with no background in parallel computing. Takes a tutorial approach, starting with small programming examples and building progressively to more challenging examples Focuses on designing, debugging and evaluating the performance of distributed and shared-memory programs Explains how to develop parallel programs using MPI, Pthreads, and OpenMP programming models

Cuda By Example

Author : Jason Sanders
ISBN : 9780132180139
Genre : Computers
File Size : 20. 43 MB
Format : PDF, Docs
Download : 577
Read : 375

Get This Book


CUDA is a computing architecture designed to facilitate the development of parallel programs. In conjunction with a comprehensive software platform, the CUDA Architecture enables programmers to draw on the immense power of graphics processing units (GPUs) when building high-performance applications. GPUs, of course, have long been available for demanding graphics and game applications. CUDA now brings this valuable resource to programmers working on applications in other domains, including science, engineering, and finance. No knowledge of graphics programming is required—just the ability to program in a modestly extended version of C. CUDA by Example, written by two senior members of the CUDA software platform team, shows programmers how to employ this new technology. The authors introduce each area of CUDA development through working examples. After a concise introduction to the CUDA platform and architecture, as well as a quick-start guide to CUDA C, the book details the techniques and trade-offs associated with each key CUDA feature. You’ll discover when to use each CUDA C extension and how to write CUDA software that delivers truly outstanding performance. Major topics covered include Parallel programming Thread cooperation Constant memory and events Texture memory Graphics interoperability Atomics Streams CUDA C on multiple GPUs Advanced atomics Additional CUDA resources All the CUDA software tools you’ll need are freely available for download from NVIDIA. http://developer.nvidia.com/object/cuda-by-example.html

Multicore And Gpu Programming

Author : Gerassimos Barlas
ISBN : 9780124171404
Genre : Computers
File Size : 71. 92 MB
Format : PDF, Kindle
Download : 932
Read : 1196

Get This Book


Multicore and GPU Programming offers broad coverage of the key parallel computing skillsets: multicore CPU programming and manycore "massively parallel" computing. Using threads, OpenMP, MPI, and CUDA, it teaches the design and development of software capable of taking advantage of today’s computing platforms incorporating CPU and GPU hardware and explains how to transition from sequential programming to a parallel computing paradigm. Presenting material refined over more than a decade of teaching parallel computing, author Gerassimos Barlas minimizes the challenge with multiple examples, extensive case studies, and full source code. Using this book, you can develop programs that run over distributed memory machines using MPI, create multi-threaded applications with either libraries or directives, write optimized applications that balance the workload between available computing resources, and profile and debug programs targeting multicore machines. Comprehensive coverage of all major multicore programming tools, including threads, OpenMP, MPI, and CUDA Demonstrates parallel programming design patterns and examples of how different tools and paradigms can be integrated for superior performance Particular focus on the emerging area of divisible load theory and its impact on load balancing and distributed systems Download source code, examples, and instructor support materials on the book's companion website

Gpu Computing Gems

Author : Wen-mei W. Hwu
ISBN : 9780123859631
Genre : Computers
File Size : 29. 89 MB
Format : PDF, ePub
Download : 647
Read : 722

Get This Book


"Since the introduction of CUDA in 2007, more than 100 million computers with CUDA capable GPUs have been shipped to end users. GPU computing application developers can now expect their application to have a mass market. With the introduction of OpenCL in 2010, researchers can now expect to develop GPU applications that can run on hardware from multiple vendors"--

Cuda Fortran For Scientists And Engineers

Author : Gregory Ruetsch
ISBN : 9780124169722
Genre : Computers
File Size : 83. 61 MB
Format : PDF, ePub, Docs
Download : 333
Read : 929

Get This Book


CUDA Fortran for Scientists and Engineers shows how high-performance application developers can leverage the power of GPUs using Fortran, the familiar language of scientific computing and supercomputer performance benchmarking. The authors presume no prior parallel computing experience, and cover the basics along with best practices for efficient GPU computing using CUDA Fortran. To help you add CUDA Fortran to existing Fortran codes, the book explains how to understand the target GPU architecture, identify computationally intensive parts of the code, and modify the code to manage the data and parallelism and optimize performance. All of this is done in Fortran, without having to rewrite in another language. Each concept is illustrated with actual examples so you can immediately evaluate the performance of your code in comparison. Leverage the power of GPU computing with PGI’s CUDA Fortran compiler Gain insights from members of the CUDA Fortran language development team Includes multi-GPU programming in CUDA Fortran, covering both peer-to-peer and message passing interface (MPI) approaches Includes full source code for all the examples and several case studies Download source code and slides from the book's companion website

Top Download:

Best Books